Ventbazar.com.ua; :: (044) 50 000 53

ПРОМЫШЛЕННАЯ ВЕНТИЛЯЦИЯ

2013-2014

О КОМПАНИИ BLAUBERG

BLAUBERG – производитель полного спектра вентиляционного оборудования, в котором оптимально сочетаются инновационные технологии, современный дизайн и традиционное исконно немецкое качество.

Мы предлагаем широкий ассортимент бытовых вентиляторов, децентрализованных вентиляционных установок с рекуперацией тепла, промышленных вентиляторов, принадлежностей и аксессуаров для создания вентиляционных систем.

Ventbazar.com.ua: .: (044) 50 000 53

Основной принцип работы BLAUBERG – клиентоориентированный подход. Мы стремимся удовлетворить пожелания каждого клиента в любой стране мира и при необходимости готовы предложить индивидуально спроектированные вентиляционные решения.

Наша философия – формирование долгосрочных партнерских отношений, которые основаны на доверии и надежности. Компания BLAUBERG всегда открыта для взаимовыгодного сотрудничества в области вентиляции.

Приглашаем вас посетить наш сайт www.blaubergventilatoren.de, где вы найдете подробную информацию о продукции и сможете выбрать необходимое вентиляционное оборудование BLAUBERG.

Содержание

20-43

48-61

64-81

Канальные вентиляторы

Вытяжные вентиляторы

Шумоизолированные вентиляторы

Центробежный вентилятор

Осевые вентиляторы

Крышные вентиляторы

Вентиляторы для прямоугольных каналов

Каминные вентиляторы

Вытяжные вентиляторы для одноканальной системы вентиляции

Агрегат для воздушного отопления или охлаждения

____ 126-143

• 106-121

• 144-147

• 122-125

62-63

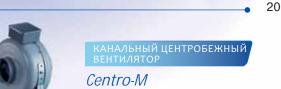
82-105

Принадлежности

Электрические принадлежности

148-206

207-217


КАНАЛЬНЫЙ ВЕНТИЛЯТОР СМЕШАННОГО ТИПА

*Turbo*Производительность - до *2350* м³/ч

КАНАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОРЫ

Centro Производительность - до 1700 м³/ч

КАНАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР С ЕС-МОТОРОМ

24

32

40

44

48

52

Centro-MEC Производительность – до *1460 м³/*4

КАНАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОРЫ

Производительность - до 5260 м³/ч

28

36

42

46

50

58

Centro-MZ Производительность - до *1540* м³/ч

КАНАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

BOX Производительность - до *553* м³/ч

КАНАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

Box-R Производительность - до *176 м³/*ч

ВЫТЯЖНОЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

ВОХ-D Производительность - до 310 м³/ч

ВЫТЯЖНОЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

Extero
Производительность - до 710 м³/ч

ШУМОИЗОЛИРОВАННЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

ISO Производительность - до *1500* м³/ч

ШУМОИЗОЛИРОВАННЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

ISO-B Производительность - до *2150 м³/*ч

ШУМОИЗОЛИРОВАННЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

ISO-V Производительность - до 16870 м³/ч

ШУМОИЗОЛИРОВАННЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

ISO-ZS Производительность - до *3930 м³/*4

ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

Helix Производительность - до 2000 м³/ч

66

74

80

86

ОСЕВОЙ КАНАЛЬНЫЙ ВЕНТИЛЯТОР

Tubo-M / Tubo-MZ
Производительность - до 1700 м³/ч

ОСЕВОЙ КАНАЛЬНЫЙ ВЕНТИЛЯТОР

Axis-F Производительность - до 11900 м³/ч

ОСЕВОЙ НАСТЕННЫЙ ВЕНТИЛЯТОР

Axis-Q Производительность - до 11900 м³/ч

70

64

ОСЕВОЙ НАСТЕННЫЙ

Axis-QR Производительность - до 11900 м³/ч

ОСЕВОЙ НАСТЕННЫЙ ВЕНТИЛЯТОР

Axis-QA Производительность - до 1700 м³/ч

78

ОСЕВОЙ НАСТЕННЫЙ ВЕНТИЛЯТОР

Axis-QRA Производительность - до 1700 м³/ч

ЦЕНТРОБЕЖНЫЙ КРЫШНЫЙ ВЕНТИЛЯТОР

Tower-V Производительность - до 4700 м³/ч

82

ЦЕНТРОБЕЖНЫЙ КРЫШНЫЙ ВЕНТИЛЯТОР С ЕС-МОТОРОМ

Tower-VEC Производительность – до 11400 м³/ч

ЦЕНТРОБЕЖНЫЙ КРЫШНЫЙ ВЕНТИЛЯТОР

Tower-H
Производительность - до 4700 м³/ч

92

ЦЕНТРОБЕЖНЫЙ КРЫШНЫЙ ВЕНТИЛЯТОР С ЕС-МОТОРОМ

Tower-HEC Производительность – до 11400 м³/ч

—• 96

ОСЕВОЙ КРЫШНЫЙ ВЕНТИЛЯТОР

*Tower-A*Производительность - до *2500* м³/ч

____ 102

ОСЕВОЙ КРЫШНЫЙ ВЕНТИЛЯТОР

Tower-AL Производительность - до 1700 м³/ч

___ 104

ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР ДЛЯ ПРЯМОУГОЛЬНЫХ КАНАЛОВ

BOX Производительность - до 2970 м³/ч

EC

ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР С ЕС-МОТОРОМ ДЛЯ ПРЯМОУГОЛЬНЫХ КАНАЛОВ

BOX-EC Производительность - до 10850 м³/ч

• 110

КАНАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР С ЕС-МОТОРОМ

Box-I EC

Производительность – до 10850 м³/ч

КАМИННЫЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР

Kamin / Kamin-ER

Производительность - до $540\,\mathrm{M}^3/\mathrm{4}$

____ 122

ВЫТЯЖНОЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР ДЛЯ ОДНОКАНАЛЬНЫХ СИСТЕМ ВЕНТИЛЯЦИИ

Valeo-BP

Производительность - до $150\,{\rm M}^3/{\rm H}$

_____ 132

ВЫТЯЖНОЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОРЫ ДЛЯ ОДНОКАНАЛЬНЫХ СИСТЕМ ВЕНТИЛЯЦИИ

Valeo-E

Производительность - до 150 м³/ч

___ 140

МОНТАЖНАЯ РАМА ДЛЯ КРЫШНЫХ ВЕНТИЛЯТОРОВ

MRDL / MRIDL

• 148

ГИБКАЯ ВСТАВКА ДЛЯ КРЫШНЫХ ВЕНТИЛЯТОРОВ

VDL

_____ 150

КАНАЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ

EKH

152

ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР ДЛЯ ПРЯМОУГОЛЬНЫХ КАНАЛОВ

Box-F

Производительность - до 9540 м³/ч

116

ВЫТЯЖНОЙ ЦЕНТРОБЕЖНЫЙ МОДУЛЬ ДЛЯ ОДНОКАНАЛЬНЫХ СИСТЕМ ВЕНТИЛЯЦИИ

Valeo

Производительность - до 150 м³/ч

126

ВЫТЯЖНОЙ ЦЕНТРОБЕЖНЫЙ ВЕНТИЛЯТОР ДЛЯ ОДНОКАНАЛЬНЫХ СИСТЕМ ВЕНТИЛЯЦИИ

Valeo-BF

Производительность - до 150 м³/ч

____ 136

АГРЕГАТ ДЛЯ ВОЗДУШНОГО ОТОПЛЕНИЯ ИЛИ ОХЛАЖДЕНИЯ

ALBE

Производительность - до $3850\,\mathrm{M}^3/\mathrm{4}$

144

КЛАПАН ОБРАТНЫЙ ДЛЯ КРЫШНЫХ ВЕНТИЛЯТОРОВ

KDL

• 149

КОНТРФЛАНЕЦ ДЛЯ КРЫШНЫХ ВЕНТИЛЯТОРОВ

FDL

—• 151

КАНАЛЬНЫЙ ВОДЯНОЙ НАГРЕВАТЕЛЬ

WKH

КАНАЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ

____ 162

_____ 178

_____ 182

185

____ 187

189

EKH

КАНАЛЬНЫЙ ВОДЯНОЙ НАГРЕВАТЕЛЬ

WKH

____ 166

ШУМОГЛУШИТЕЛЬ

SD

ШУМОГЛУШИТЕЛЬ

SDF

180

ШУМОГЛУШИТЕЛЬ

SD

ЗАСЛОНКА РЕГУЛИРУЮЩАЯ

VK

184

ЗАСЛОНКА РЕГУЛИРУЮЩАЯ

AVK

ЗАСЛОНКА РЕГУЛИРУЮЩАЯ

VK

186

ЗАСЛОНКА РЕГУЛИРУЮЩАЯ

AVK

КЛАПАН ГРАВИТАЦИОННЫЙ

VG

___ 188

КЛАПАН ГРАВИТАЦИОННЫЙ

VG

PETУЛЯТОР РАСХОДА BO3/IVXA

SL

• 190

РЕГУЛЯТОР РАСХОДА ВОЗЛУХА

ASL

РЕГУЛЯТОР РАСХОДА ВОЗДУХА

ASLF

______ 192

____ 191

ГИБКАЯ ВИБРОГАСЯЩАЯ ВСТАВКА

ОБРАТНЫЙ КЛАПАН

КАССЕТНЫЙ ВОЗДУШНЫЙ ФИЛЬТР

КАРМАННЫЙ ВОЗДУШНЫЙ ФИЛЬТРЫ

БЛОК УПРАВЛЕНИЯ БЫТОВЫМИ ВЕНТИЛЯТОРАМИ

MCD 60/0.3

193

195

• 197

199

202

EVA

VRV

VRVS

KFBV

KFBT

ΚZ

ГИБКАЯ ВИБРОГАСЯЩАЯ ВСТАВКА

EVA

• 194

VRVS

КАССЕТНЫЙ ВОЗДУШНЫЙ ФИЛЬТР

KFBK

• 198

196

КАРМАННЫЙ ВОЗДУШНЫЙ ФИЛЬТР

KFBT

200

КАССЕТНЫЙ ВОЗДУШНЫЙ ФИЛЬТР

*KFB*K

204

KZH

CDP-3/5

207

205

8

• 206

РЕГУЛЯТОР СКОРОСТИ ТИРИСТОРНЫЙ

CDT E1.8

209

РЕГУЛЯТОР СКОРОСТИ ТИРИСТОРНЫЙ

CDTE E1.8

211

КОМНАТНЫЙ ТЕРМОРЕГУЛЯТОР

MLC E2 / MLCD E2

213

ТРАНСФОРМАТОР ПОНИЖАЮЩИЙ

AT-25 220/12

_____ 215

ТАЙМЕР / ДАТЧИН

TE/TI 1.5 HSE/HSI 1.5 LSE/LSI 1.5 IRSE/IRSI 1.5

217

РЕГУЛЯТОР СКОРОСТИ ДЛЯ ЕС-МОТОРОВ

CDT E/0-10

210

РЕГУЛЯТОР СКОРОСТИ ДЛЯ ЕС-МОТОРОВ

CDTE E/0-10

• 212

КОМНАТНЫЙ ТЕРМОСТАТ

TS E10

• 214

ТРАНСФОРМАТОР ПОНИЖАЮЩИЙ

ATK-25 220/12

МИР ВЕНТИЛЯЦИИ

Вентиляция представляет собой контролируемый воздухообмен в помещениях, при котором происходит удаление загрязненного воздуха и замена его свежим, как правило, подготовленным воздухом.

Основными источниками загрязнения воздуха являются уличная и домашняя пыль, табачный дым, пылевые клещи, животные, бытовая техника, газ, отделочные материалы, углекислый газ и т.д.

Отсутствие надлежащей вентиляции часто приводит к аллергическим и астматическим заболеваниям, распространению инфекций, ослаблению иммунитета людей, а также появлению устойчивых неприятных запахов и плесени в помещении.

Единственным способом борьбы с данными проявлениями является наличие качественной вентиляции в помещении. Для эффективной вентиляции используется совокупность мероприятий и устройств, которые обеспечивают организованный принудительный воздухообмен и формируют различные системы вентиляции.

Системы вентиляции создают благоприятные для человека условия воздушной среды помещений, которые отвечают нормам строительства и требованиям технологических процессов, сохранению конструкций здания, хранению продукции и т.п.

Главным назначением вентиляции является поддержание основных качественных

и метеорологических параметров окружающей воздушной среды, благоприятных для здоровья человека.

- Соотношение кислорода и углекислого газа. Человек при дыхании потребляет кислород, а выдыхает углекислый газ. С течением времени количество кислорода уменьшается, а углекислого газа увеличивается, что вызывает ощущение духоты и спертого воздуха в помещении. Для нормальной жизнедеятельности человека необходимый уровень содержания кислорода в воздушной среде должен составлять 21% и выше. Для поддержания такого уровня кислорода и предупреждения высокой концентрации вредных веществ, полное обновление воздуха должно происходить минимум один раз в час. В помещениях со специфическими функциями показатель кратности воздухообмена должен быть еще выше.
- □ Предельно-допустимая концентрация вредных веществ. Человек ежедневно вдыхает 20 литров воздуха. Наиболее благоприятным для нормального самочувствия является природный воздух, насыщенный озоном, ионами и фитонцидами. Повышенная концентрация вредных веществ в воздухе, таких как пыль, газ, табачный дым и другие, негативно влияет на организм человека и может стать причиной тяжелых хронических заболеваний.
- □ **Запахи.** Отсутствие нормальной циркуляции воздуха в помещении приводит к кон-

центрации и повышенной устойчивости неприятных запахов, создающих дискомфорт, вызывающих аллергическую реакцию и раздражающих нервную систему.

- Влажность воздуха. Дисбаланс влажности в помещении вызывает неприятные ощущения, а также может служить катализатором для обострения хронических болезней дыхательных путей, таких как бронхиальная астма, и кожи. В зависимости от периода года и температуры влажность также оказывает негативное воздействие на обстановку помещений. Например, зимой от пониженной влажности деревянные изделия и предметы могут рассыхаться, а в помещениях с повышенной влажностью, наоборот набухать и покрываться плесенью.
- Температура воздуха. Наиболее оптимальной температурой воздушной среды для нормальной жизнедеятельности человека является показатель 21-23 °С. Колебания или существенные отклонения от данного показателя влияют на самочувствие человека, физическую и умственную активность, провоцируют головные боли.
- □ Подвижность воздуха. Нерегулируемая и неконтролируемая подвижность воздуха ощущается человеком в виде сквозняка или духоты, что приводит к возникновению респираторных заболеваний, быстрой утомляемости, колебаниям давления и оказывает негативное влияние на здоровье человека.

СОЗДАНИЕ СИСТЕМ ВЕНТИЛЯЦИИ

Создание эффективной системы вентиляции требует понимания различия между их типами и подбор правильного оборудования непосредственно для необходимого типа.

■ Типы вентиляционных систем классифицируются на основе таких основных параметров:

□ Способ перемещения воздуха:

- естественная (гравитационная) вентиляция: перемещение воздуха в гравитационных системах происходит за счёт разности плотностей и температуры наружного и внутреннего воздуха без применения какоголибо электрооборудования (вентиляторов, электродвигателей);
- искусственная (механическая) вентиляция: перемещение воздуха в механической системе вентиляции происходит с использованием оборудования и приборов (вентиляторов, фильтров, воздухонагревателей и т.д.), позволяющие перемещать, очищать и нагревать или охлаждать воздух.

□ Назначение:

– приточная вентиляция: осуществляет подачу свежего воздуха в помещение, как правило, очищая и подогревая или охлаждая его;

- вытяжная вентиляция: осуществляет удаление загрязненного отработанного воздуха из помещения.
- приточно-вытяжная вентиляция с рекуперацией тепла: эффективная контролируемая система вентиляции, в которой тепло удаляемого воздуха используется для нагрева или охлаждения свежего приточного воздуха.

□ Организация воздухообмена:

- местная вентиляция: предназначена для притока или вытяжки воздуха из определенных (ограниченных) локализованных мест концентрации вредных веществ, запахов и т.п.:
- общеобменная вентиляция: предназначена для приточной или вытяжной вентиляции всего помещения.

Конструкция:

- наборная вентиляция: профессионально спроектированная, габаритная вентиляционная система, которая собирается из различных элементов вентиляционного оборудования;
- моноблочная вентиляция: приточные или приточно-вытяжные вентиляционные системы, все компоненты которых укомплектованы в относительно малогабаритный звуко- и

шумоизолированный корпус и являются готовыми вентиляционными агрегатами.

Следующим важным шагом в создании систем вентиляции является выбор необходимого вентиляционного оборудования, который осуществляется с учетом основных технических характеристик:

- производительность по воздуху (м³/ч);
- рабочее давление (Па) и скорость потока воздуха в воздуховодах (м/с);
- допустимый уровень шума (дБ(А);
- мощность калорифера (кВт).

Основные расчетные технические характеристики для подбора вентиляционного оборудования.

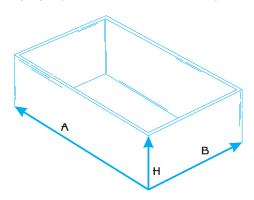
□ Производительность по воздуху, м³/ч. Объем воздуха, необходимый для удаления или притока, зависит от концентрации вредных веществ и неприятных запахов, количества людей, влажности и излишков тепла в помещении. Расчет вентиляционного воздуха производится для каждого помещения отдельно по результатам ранее проведенных исследований или на основе кратности воздухообмена.

Определение объемного расхода согласно кратности воздухообмена.

Кратность воздухообмена выведена опытным путем для случаев без особого загрязнения вредными веществами.

$$L = V \text{пом} * Kp (M^3/4),$$

где, **Vпом** – объем помещения, м³; **Кр** – минимальная кратность воздухообмена, 1/ч., см. таблицу кратности воздухообмена.


Как определить объем помещения?

Необходимо рассчитать общий объем помещения в кубических метрах. Для этого используется простая формула:

Длина x ширина x высота = объем помещения м³

$$A \times B \times H = V (M^3)$$

Например: помещение длиной 10 м, шириной 6 м и высотой 3,5 м. Для определения объема воздуха, необходимого для вентиляции этого помещения, рассчитываем объем комнаты: 10 х 6 х 3,5 = 210 м³. Затем, используя приведенные ниже таблицы рекомендуемой кратности воздухообмена, определяем требуемую производительность вентилятора.

■ Определение объемного расхода воздуха согласно количества людей (нормы DIN 1946 ч.2).

В помещениях, имеющих дополнительный источник загрязнения (например, табачный дым) объемный расход на одного человека увеличивается на 20 м³/ч.

$$L = L_1 * N_1 (M^3/4),$$

где $\mathbf{L_1}$ – норма воздуха на одного человека, м³/ч *чел; $\mathbf{N_L}$ – количество людей в помещении.

- 20-25 м 3 /ч на одного человека при минимальной физической активности
- $-45~{\rm M}^3/{\rm 4}$ на одного человека при легкой физической работе
- 60 м 3 /ч на одного человека при тяжелой физической работе

Таблица 1. Норма атмосферного воздуха на человека в зависимости от типа помещения (нормы DIN 1946, Ч. 2).

Тип помещения	м³/ч х чел
Аудитория	30
Большой офис	60
Выставочный павильон	30
Зал для торжественных мероприятий	30
Кафе	40
Классная комната	30
Кинозал	30
Комната отдыха (на предприятии)	30
Комната отдыха (медпункт)	30
Комнаты в отеле	40
Конференц-зал	20
Музей	30
Небольшой офис	40
Столовая	30
Театр, концертный зал	20
Торговый зал	20
Спортивный зал со зрителями	30
Читальный зал	20

Определение объемного расхода воздуха согласно предельно допустимой концентрации вредных веществ.

$$L = \frac{G_{CO_2}}{y_{\Pi J K} - y_{\Pi}} (M^3/4),$$

где $\mathbf{G}_{\text{со2}}$ – количество выделяющегося CO_2 , л/ч; $\mathbf{Y}_{\text{пдк}}$ – предельно-допустимая концентрация (ПДК) CO_2 в удаляемом воздухе, л/м³;

 y_n – содержание газа в приточном воздухе, л/м³.

Таблица 2. ПДК некоторых веществ

Pouroerno	CM ³	МГ	
Вещество	M ³	M ³	
Азотная кислота	10	25	
Аммиак	50	35	
Анилин	2	8	
Асбестовая пыль	_	2	
Ацетон	1000	2400	
Бутан	1000	2350	
Гидразин	0,1	0,13	
Йод	0,1	1	
Метанол	200	260	
Никотин	0,07	0,5	
Озон	0,1	0,2	
Оксид цинка	-	5	
ПВХ	3	8	
Пропан	1000	1800	
Ртуть	0,01	0,1	
Свинец	-	0,1	
Формальдегид	0,1	1,2	
Хлор	0,5	1,5	
Хроматы	-	0,1	
CO	30	33	
CO ₂	5000	9000	
HCL	5	7	
NO ₂	5	9	
SO ₂ (H ₂ SO ₄)	2 (-)	5 (1)	

Объемный расхода воздуха, необходимый для устранения влаги.

$$L = \frac{D}{(d_v - d_n) * \rho} (M^3/4),$$

где ${f D}$ – количество выделяемой влаги, г/ч; ${f d}_{{f v}}$ – влагосодержание удаляемого воздуха, г воды/кг воздуха;

- ${f d}_{{\sf n}}$ влагосодержание приточного воздуха, г воды/кг воздуха;
- ho плотность воздуха, кг/м³ (при 20°C = 1,205 кг/м³);

Объемный расхода воздуха, необходимый для удаления излишков тепла.

$$L = \frac{Q}{\rho * C_p * (t_v - t_n)} (M^3/4)$$

где Q – выделение в помещение тепла, кВт;

- t, температура удаляемого воздуха, °C;
- t_ температура приточного воздуха, °C;
- ρ плотность воздуха, кг/м³ (при 20°C = 1,205 кг/м³);
- $\mathbf{C}_{_{\mathrm{p}}}$ теплоемкость воздуха, кДж/(кг·К) (при 20°С;
- $C_p = 1,005 \text{ кДж/(кг·K)}.$

Таблица 3 Кратность возлухообмена:

Ta	Габлица 3. Кратность воздухообмена:						
	Наименование	Кратность					
	помещения	воздухообмена					
	Жилая комната (в квар-	3 м ³ /ч на 1м ² жилых					
	тире или общежитии)	помещений					
됸	Кухня квартиры или	0.0					
뷴	общежития	6-8					
Ħ	Ванная комната	7-9					
ž	Душевая	7-9					
0	Туалет	8-10					
Бытовые помещения	Прачечная (бытовая)	7					
5	Гардеробная комната	1,5					
ß	Кладовая	1					
	Гараж	4-8					
	Погреб	4-6					
	Театр, кинозал,	-					
	конференц-зал	20-40 м³ на чел.					
	Офисное помещение	5-7					
	Банк	2-4					
	Ресторан	8-10					
	Бар, кафе, пивной зал,	0-10					
		9-11					
В	бильярдная Кухонное помещение в						
Pel	кафе, ресторане	10-15					
00	Универсальный						
2	магазин	1,5-3					
Промышленные помещения и помещения большого объема	Аптека (торговый зал)	3					
일	Гараж и	-					
100	авторемонтная	6-8					
Ž	мастерская						
퍝	Туалет	10-12 (или 100 м³					
Me	(общественный)	на 1 унитаз)					
2	Танцевальный зал,	8-10					
Z	дискотека						
Ž	Комната для курения	10					
E E	Серверная	5-10					
Me		Не менее 80 м ³					
은	Спортивный зал	на 1 занимающегося					
Ыe		и не менее 20 м ³					
王	_	на 1 зрителя					
951	Парикмахерская	_					
뒣	До 5 рабочих мест	2					
ő	Более 5 рабочих мест	3					
Ĕ	Склад	1-2					
	Прачечная	10-13					
	Бассейн	10-20					
	Промышленный	25-40					
	красильный цех	20.40					
	Механическая	3-5					
	мастерская						
	Школьный класс	3-8					

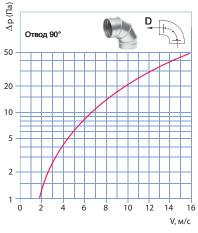
■ Рабочее давление (Па) и скорость потока воздуха в воздуховодах (м/с).

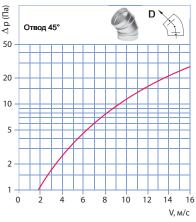
Рабочее давлении и скорость потока воздуха рассчитываются исходя из проектной схемы воздуховодов, которую в дальнейшем формируют в воздухораспределительную сеть вентиляционной системы.

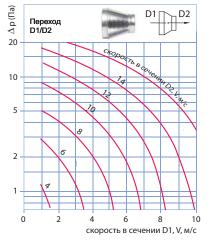
Необходимое давление для той или иной системы вентиляции определяется мощностью вентилятора и рассчитывается исходя из диаметра и длинны комплектующих элементов сети, числа поворотов и переходов с одного диаметра на другой, а также типа распределителей воздуха. Чем больше элементов, длиннее сеть и больше поворотов и переходов, тем больше должно быть создаваемое вентилятором давление.

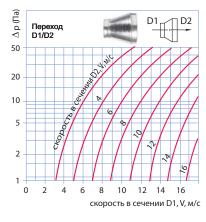
Скорость потока воздуха также зависит от диаметра воздуховодов. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Большой диаметр воздуховодов и высокая скорость потока воздуха увеличивают сопротивление и провоцируют падение давления, которое обязательно необходимо учитывать при выборе вентиляционного оборудования.

Рекомендуемая скорость движения воздуха в воздуховодах.


Тип	Скорость воздуха, м/с
Магистральные воздуховоды	6 - 8
Боковые ответвления	4 - 5
Распределительные воздуховоды	1,5 - 2
Приточные решетки у потолка	1 – 3
Вытяжные решетки	1,5 – 3


■ Определение скорости движения воздуха в воздуховодах.


$$V = \frac{L}{3600*F} (M/ceK),$$


где **L** – расход воздуха, $M^3/4$; **F** – площадь сечения канала, M^2 .

Сопротивление фасонных элементов сети

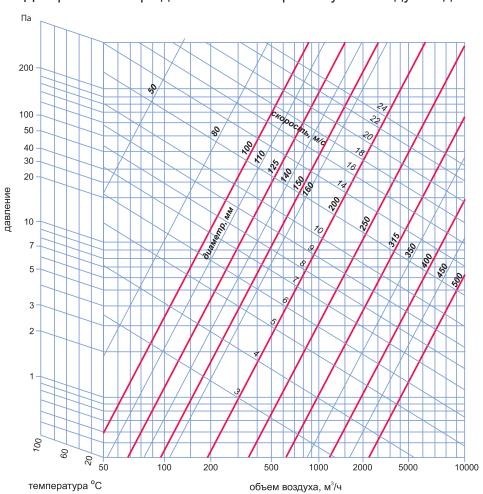


Диаграмма потерь давления на 1 м растянутого воздуховода

Мощность калорифера (кВт).

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температуры воздуха на выходе системы и минимальной температуры наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°C. Мощность калорифера рассчитывается по формуле:

Q=
$$\frac{L* \rho * C_p * (t_v - t_n)}{3600}$$
 (KBT),

где **L** – расход воздуха, м³/ч;

- t, температура воздуха в помещении, °C;
- t температура наружного воздуха, °С
- ho плотность воздуха, кг/м³ (при 20 °C=1,205 кг/м³); **С** – теплоемкость воздуха, кДж/(кг·К) (при 20°С;

С =1,005 кДж/(кг⋅К)).

Минимальная температура наружного воздуха зависит от климатической зоны и рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов.

При подборе электрического калорифера необходимо учитывать следующие ограничения:

- Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
- □ Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

где І - максимальный потребляемый ток, А; Р – мощность калорифера, Вт;

U – напряжение питание:

Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

$$\Delta t = \frac{3600^{\circ}Q}{L^{*}\rho^{*}C_{p}} \qquad (^{\circ}C)$$

L – расход воздуха, $M^3/4$;

- ho плотность воздуха, кг/м³ (при 20 °C = 1,205 кг/
- $\mathbf{C}_{_{\mathbf{D}}}$ теплоемкость воздуха, кДж/(кг·К) (при 20 °C; =1,005 кДж/(кг·К));
- Q мощность калорифера, кВт.

- Водяной нагреватель предназначен для нагрева воздуха в канальных системах вентиляции. Нагреватель устанавливается непосредственно в канал. В качестве теплоносителя могут использоваться как вода, так и незамерзающие смеси. Во избежание замораживания теплообменника необходимо предусмотреть комплекс мероприятий:
- 1. Обеспечение скорости протекания воды не ниже минимально допустимой;
- 2. Защиту по температуре воздуха и обратной воды:
- 3. Отключение вентилятора, закрытие воздушной заслонки и открытие регулирующего вентиля при срабатывании защиты

Допустимый уровень шума (дБ(A).

Основным источником шума является непосредственно вентилятор. Но существенное влияние на уровень шума вентиляционной системы оказывает также скорость потока воздуха.

Шум вентилятора и элементов вентиляционной трассы распространяется по воздуховоду и через воздухораспределительные устройства проникает в помещение.

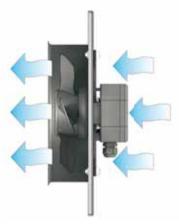
Снизить уровень шума возможно, выбрав наименее шумную модель среди других с аналогичными техническими параметрами или путем установки шумоглушителей.

Основой для проектирования систем вентиляции является акустический расчет, основные задачи которого:

- определение октавного спектра вентиляционного шума в расчетных точках;
- определение необходимого снижения октанового спектра путем сопоставления с допустимыми значениями по соответствующим нормативам.

Таблица 4. Значение уровня громкости в зависимости от источника звука

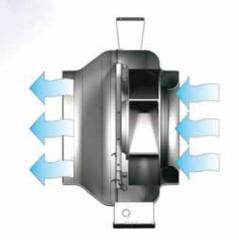
дБА	Характеристика	Источники звука		
0	ничего не слышно			
5				
10	почти не слышно	тихий шелест листьев		
15		шелест листвы		
20	едва слышно	шепот человека (на расстоянии 1м).		
25		шепот человека (1м)		
	Тихо	шепот, тиканье настенных часов.		
30		норма для жилых помещений ночью, с 23 до 7 часов утра		
35		приглушенный разговор		
40		обычная речь		
40	довольно слышно	норма для жилых помещений, с 7 до 23 часов		
45		разговор обычной громкости		
50		разговор, пишущая машинка		
55	отчётливо слышно	Норма для офисных помещений класса А (по европейским нормам)		
60		норма для контор		
65		громкий разговор (на расстоянии 1м)		
70	шумно громкие разговоры (1м)			
75		крик, смех (1м)		
80		крик, звук мотоцикла с глушителем		
85	OUGUI HINAMIO	громкий крик, звук мотоцикла с глушителем		
90	очень шумно	громкие крики, грузовой железнодорожный вагон (на расстоянии 7 м)		
95		звук проезжающего вагона метро (7м)		
100		звук оркестра, прерывистывые звуки проезжающего вагона метро, раскаты грома		
100	крайне шумно	максимально допустимое звуковое давление для наушников плеера (по европейским нормам)		
105	крайне шумно	в самолёте, произведенном до 1980 года		
110		вертолёт		
115		пескоструйный аппарат (1м)		
120	почти невыносимо	работающий отбойный молоток (1м)		
130	болевой порог	звук взлетающего самолета		


ТИПЫ ВЕНТИЛЯТОРОВ

Вентилятор представляет собой механическое устройство, предназначенное для перемещения воздуха по воздуховодам системы вентиляции.

- По конструкции и принципу действия вентиляторы делятся на:
 - осевые (аксиальные);
 - центробежно-осевые;
 - центробежные (радиальные);
 - тангенциальные (диаметральные).

Осевые вентиляторы – представляют собой колесо из консольных лопастей (крыльчатка), закреплённых на втулке под углом к плоскости вращения, расположенное в цилиндрическом кожухе. Рабочее колесо, как правило, насаживается непосредственно на ось электродвигателя.


При вращении колеса воздух захватывается лопастями и перемещается в осевом направлении. При этом перемещение воздуха в радиальном направлении практически отсутствует. Осевые вентиляторы имеют больший КПД по сравнению с радиальными и диаметральными. Такие вентиляторы, как правило, применяют для подачи значительных объёмов воздуха при малых аэродинамических сопротивлениях вентиляционной сети.

Применяются для вытяжки и притока воздуха через свободные проемы или вместе с воздуховодами не более 3-х метров горизонтального участка с небольшим аэродинамическим сопротивлением сети.

□ Центробежно-осевые вентиляторы — центробежно-осевые вентиляторы обладают способностью перемещения воздуха в направлении оси двигателя с повышенным напором. Воздух приводится в движение турбиной, а не крыльчаткой. Каждая турбина проходит индивидуальную балансировку на валу электродвигателя. Этим достигается исключительно низкий уровень шума, намного меньший, чем у осевых или центробежных вентиляторов. Широко используются в системах вентиляции с круглыми воздуховодами.

Применяются для вытяжки-притока воздуха в системах вентиляции с большой протяженностью воздуховодов и высоким аэродинамическим сопротивлением сети. Могут устанавливаться непосредственно на вытяжных воздуховодах.

□ Центробежные вентиляторы – представляют собой лопаточное рабочее колесо, расположенное в спиральном кожухе. Рабочее колесо такого вентилятора – пустотелый цилиндр, в котором установлены лопатки, скрепленные по окружности дисками. В центре скрепляющих дисков находится ступица для насаживания колеса на вал.

При вращении рабочего колеса воздух, попадающий в каналы между его лопатками, двигается в радиальном направлении к периферии колеса и сжимается. Под действием центробежной силы он отбрасывается в спиральный кожух и далее направляется в нагнетательное отверстие.

В зависимости от назначения вентилятора, лопатки рабочего колеса изготавливают загнутыми вперёд или назад.

Количество лопаток бывает различным в зависимости от типа и назначения вентилятора. Применение радиальных вентиляторов

с лопатками, загнутыми назад, позволяет экономить до 20 % электроэнергии. Также они легко переносят перегрузки по расходу воздуха.

Преимуществами радиальных вентиляторов с лопатками рабочего колеса, загнутыми вперёд, являются меньший диаметр колеса, а соответственно и меньшие размеры самого вентилятора, и более низкая частота вращения, что создаёт меньший шум. При этом расходные и напорные характеристики не отличаются от показателей вентиляторов с лопатками, загнутыми назад.

Применяются для вытяжки и притока воздуха в системах вентиляции с большой протяженностью воздуховодов и высоким аэродинамическим сопротивлением сети.

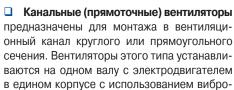
□ Тангенциальные вентиляторы – представляют собой рабочее колесо барабанного типа с загнутыми вперед лопатками. Корпус вентилятора имеет патрубок на входе и диффузор на выходе. Диаметральные вентиляторы характеризуются более высокими аэродинамическими параметрами, по сравнению с другими типами вентиляторов, в частности, они создают плоский равномерный поток воздуха большой ширины; удобством компоновки, позволяющей осуществлять поворот потока в широких пределах; компактностью установки, позволяющей существенно сократить объем, занимаемый вентиляционной установкой.

Применяются в вентиляционных сетях крайне редко. Нашли широкое применение в различных агрегатах вентиляции и кондиционирования воздуха: фанкойлах, внутренних блоках сплит-систем, воздушных завесах и т.д.

- По способу исполнения вентиляторы разделяют на:
 - многозональные;
 - канальные;
 - крышные.

 Многозональные вентиляторы представляют собой центробежные вытяжные вентиляторы со специальным корпусом,


позволяющим подключить несколько всасывающих воздуховодов, вытягивающих воздух из разных зон. Зоной может быть отдельный вентиляционный канал, комната или даже часть большого помещения.



изолирующих прокладок. Вентилятор может быть осевым, многолопастным или радиальным, с лопатками загнутыми как вперед, так и назад, одностороннего или двухстороннего всасывания. Корпус канальных вентиляторов может изготавливаться из специального пластика, гальванизированной стали и даже быть смешанным. Благодаря небольшим габаритным размерам канальные вентиляторы могут устанавливаться непосредственно в сети воздуховодов, встраиваться в канальные системы вентиляции и кондиционирования воздуха и скрываться за подвесным потолком или в специальных вертикальных шкафах.

тора при его установке. Основные преимущества канального вентилятора связаны с его компактностью при высокой производительности.

□ Крышные вентиляторы монтируются непосредственно на крыше здания, обычно имеют специальную раму для обеспечения долговечности и стойкости к атмосферным воздействиям. В связи с тем, что они практически весь срок службы находятся на улице, к ним предъявляются особые требования по влаго и пыле устойчивости. Изготавливаются из высококачественной стали с эпоксидным коррозиестойким покрытием, либо гальванизированной стали.

Возможно любое (горизонтальное, вертикальное или наклонное) положение вентиля-

Существуют крышные вентиляторы как для систем общей вентиляции, так и специальные жаропрочные вентиляторы для высокотемпературных систем, например, организация вытяжки для камина или газового котла.

ЭЛЕКТРОДВИГАТЕЛИ ВЕНТИЛЯТОРОВ

Питание двигателей осуществляется постоянным или переменным током.

Двигатель постоянного тока – электродвигатель, питание которого осуществляется постоянным током.

Двигатель переменного тока – электродвигатель, питание которого осуществляется от сети переменного тока.

Двигатели переменного тока – наиболее распространенный вид двигателей в связи с тем, что основная электросеть в стране питает переменным током.

Электродвигатели переменного тока подразделяются на 2 подвида:

Синхронные электродвигатели – электродвигатели переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения;

Асинхронные электродвигатели – электродвигатели переменного тока, в котором частота вращения ротора отличается от ча-

стоты вращающегося магнитного поля, создаваемого питающим напряжением.

В настоящее время широко применяются асинхронные электродвигатели.

■ Асинхронный электродвигатель имеет две основные части – статор и ротор.

Статором называется неподвижная часть машины. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротором, в его пазах также уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности). В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым

и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты и удобны в эксплуатации. Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

Достоинства асинхронного электродвигателя с короткозамкнутым ротором:

- Приблизительно постоянная скорость при разных нагрузках.
- Возможность кратковременных механических перегрузок.
- Простота конструкции.
- Простота пуска и легкость его автоматизации
- Более высокие соѕ ф и КПД, чем у электродвигателей с фазным ротором.

Асинхронный электродвигатель с внешним ротором по конструкции подобен асинхронному электродвигателю.

Отличительной особенностью является то, что ротор электродвигателя расположен снаружи статорной обмотки, а статор с обмотками находится в центре электродвигателя. Такое исполнение электродвигателя обеспечивает компактность вентиляционному агрегату. Вал электродвигателя вращается на шарикоподшипниках, закрепленных вну-

три статора, а рабочее колесо крепится на корпусе ротора. Благодаря такой конструкции обеспечивается воздушное охлаждение электродвигателя, что позволяет применять вентиляторы в широком температурном диапазоне. Все электродвигатели вместе с рабочим колесом и вентиляторы статически и динамически сбалансированы в двух плоскостях в соответствии с DIN ISO 1940. Для защиты от перегрева электродвигатели оборудованы встроенной тепловой защитой с автоматическим перезапуском.

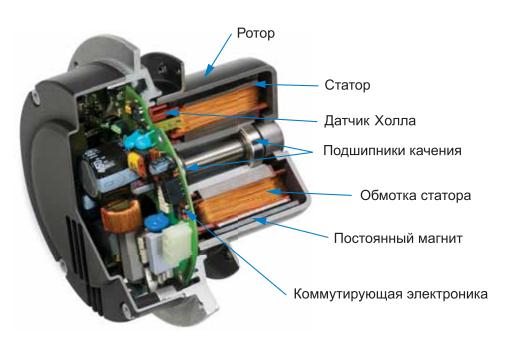
Число оборотов всех двигателей регулируется в диапазон 100% при помощи трансформаторных и электронных устройств (во взрывозащищенных электродвигателях возможно только трансформаторное регулирование напряжением в диапазоне от 25% до 100% от номинального напряжения питания). Регулирование осуществляется за счет снижения питающего напряжения (частота сети при этом остается неизменной). При плавном изменении питающего напряжения скорость вращения электродвигателя также плавно снижается или увеличивается вслед за изменением напряжения. Допускается управление работой электродвигателя с помощью частотного преобразователя.

Достоинства асинхронного электродвигателя с внешним ротором:

- долговечность;
- легкость и малогабаритность конструкции.
- удобство сборки и установки.
- совмещенное расположение рабочего колеса и электродвигателя;
- возможность управления мощностью вентиляции;
- низкие затраты энергии при запуске.

□ Электродвигатель с высокоэффективным ЕС мотором представляет собой синхронный электродвигатель постоянного тока, приводимый в действие с помощью электронного коммутирующего устройства (контроллера), который в отличие от обычного двигателя постоянного тока не имеет трущихся и изнашивающихся деталей, таких как коллектор и щетки. Их заменяет электронная плата ЕС-контроллера, не требующая обслуживания.

ЕС-технологии являются самым современным способом создания энергосберегающей и высокоэффективной вентиляции. Потребление электроэнергии ЕС-моторов до 50% меньше, чем у обычных двигателей, при этом КПД достигает 90%.


Новые электродвигатели отличаются высокой производительностью, низким уровнем шума и оптимальным управлением во всем диапазоне скоростей вращения. Электронный ЕС-контроллер позволяет осуществлять дополнительные интеллектуальные функции, например, управление вентилятором по датчику температуры, давления и другим параметрам.

Уникальное программное обеспечение позволяет с высокой точностью управлять ра-

ботой вентиляторов, объединенных в сеть. Характеристики работы вентилятора, работающего в единой сети, могут быть централизовано скорректированы для удовлетворения параметров системы вентиляции. Все параметры системы выводятся на дисплей компьютера и, при необходимости, позволяет задавать индивидуальные режимы работы для каждого вентилятора в сети. Данная технология дает возможность настроить систему вентиляции в соответствии с требованиями конкретного потребителя.

Достоинства электродвигателей с ЕС мотором:

- экономичная работа на любой скорости вращения рабочего колеса вентилятора вплоть до нуля;
- пониженное тепловыделение;
- габаритные размеры вентилятора могут быть уменьшены благодаря конструкции с внешним ротором;
- максимальная скорость вращения вентилятора не зависит от частоты электрического тока в сети (вентилятор работает как в сети с частотой 50 Гц, так и в сети с частотой 60 Гц);
- высокий КПД при работе на малых оборотах:
- энергопотребление на 1/3 меньше, чем у традиционных двигателей;
- возможность обмена данными между персональным компьютером и вентилятором для установки и контроля рабочих характеристик;
- возможность объединения вентиляторов в единую систему и их централизованное управление.

РЕГУЛИРОВАНИЕ СКОРОСТИ ВРАЩЕНИЯ ВЕНТИЛЯТОРОВ

Потребность в изменении расхода воздуха в системе вентиляции возникает из-за изменения тепловыделений, содержания вредных веществ, влажности и других причин. Регулирование скорости вращения вентилятора необходимо в системах с изменяющимся воздухообменом и осуществляется при помощи регуляторов скорости вращения. Число оборотов всех двигателей регулируется в диапазоне 100% (во взрывозащищенных электродвигателях возможно только трансформаторное регулирование напряжением в диапазоне от 25% до 100% от номинального напряжения питания). Регулирование осуществляется за счет снижения питающего напряжения (частота сети при этом остается неизменной). При плавном изменении питающего напряжения скорость вращения электродвигателя также плавно снижается или увеличивается вслед за изменением напряжения. Допускается управление работой электродвигателя с помощью тиристорного, трансформаторного или частотного регулятора.

Благодаря регулированию мощности вентиляционных систем и установок посредством изменения скорости вращения достигаются:

- комфортный режим производительности вентилятора;
- возможность работы в энергосберегающем режиме.

Изменение числа оборотов, как способ управления мощностью вентилятора, представляет собой один из оптимальных вариантов повышения экономичности его работы. Потребление мощности вентилятором снижается пропорционально числу оборотов в 3-й степени:

$$\frac{P_L}{P_{L,0}} = \frac{(n)^3}{n_0}$$

где P – электрическая мощность (BT, кBT); n_a – номинальная скорость.

Количество сэкономленной при этом снижении потребляемой электроэнергии зависит от рабочих характеристик двигателя и блока управления. □ Снижение уровня шума вентилятора. Соотношение параметров вентилятора в процессе регулирования скорости вращения приводит к значительному снижению уровня шума, которое составляет:

$$\Delta$$
 L $pprox$ 50 Lg $\frac{\text{(n)}}{\text{n}_{\text{0}}}$ дБ,

где **L** – мощность / громкость звука (дБ(A). \mathbf{n}_0 – номинальная скорость.

- □ Соответствие условиям эксплуатации и техническим параметрам вентилятора (ухудшение качества воздуха, повышение влажности, изменение количества людей и т.п.).
- Различают основные виды управления производительностью вентиляторов в зависимости от типа регулятора скорости врашения:
- тиристорное управление;
- трансформаторное управление;
- частотное управление.

□ Тиристорное управление.

Тиристорные регуляторы предназначены для плавного ручного регулирования скорости вращения электродвигателей вентиляторов и создаваемого ими расхода воздуха. Применяется для вентиляторов с асинхронными электродвигателями. Отличаются высокой точностью и эффективностью управления. Рабочее напряжение питания 230 В (~1, 50 Гц). Возможно управление работой нескольких вентиляторов. При этом суммарный ток, потребляемый вентиляторами, не должен превышать номинал регулятора. Регулятор скорости вращения обеспечивает плавное изменение производительности вентиляторов от 0 до 100%. При использовании в нижнем диапазоне скоростей может усилиться шум, издаваемый вентилятором. Поэтому тиристорный регулятор используют, как правило, в системах вентиляции, где нет повышенных требований к уровню шума. При работе электродвигателя с низким напряжением питания срок службы подшипников снижается. Имеют ограниченный рекомендуемый диапазон регулирования -

60 - 100 % от номинального напряжения.

Трансформаторное управление.

Трансформаторные регуляторы предназначены для регулирования скорости вращения электродвигателей вентиляторов, управляемых напряжением, изменяя подаваемое напряжение (пять установок). Работа трансформаторных регуляторов скорости основана на использовании пятиступенчатого автотрансформатора для управления напряжением питания электродвигателей, при этом частота сети остается неизменной. Возможно управление работой нескольких вентиляторов. При этом суммарный ток, потребляемый вентиляторами, не должен превышать номинал регулятора. При использовании трансформаторного регулятора шум электродвигателя не увеличивается в нижнем диапазоне скоростей. При работе электродвигателя с низким напряжением питания срок службы подшипников снижается. Рекомендуемый диапазон регулирования напряжения для 1-но фазных двигателей до 45 %, а 3-х фазных двигателей – до 55 % от номинального напряжения.

□ Частотное управление.

Частотные регуляторы предназначены для плавного пуска или торможения, изменения скорости вращения, управления производительностью и защиты асинхронных электродвигателей вентиляторов за счет создания на выходе преобразователя электрического напряжения заданной частоты. Преобразователь частоты состоит из электрического привода и управляющей части. Электрический привод частотного преобразователя состоит из схем, в состав которых входит тиристор или транзистор, которые работают в режиме электронных ключей. В основе управляющей части находится микропроцессор, который обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

РАСШИФРОВКА ИНДЕКСА ЗАЩИТЫ «IP»

При выборе оборудования и определении места его установки очень важно обеспечить соответствие степени защиты условиям, в которых это оборудование будет эксплуатироваться. Любой электроприбор должен одновременно соответстовать двум требованиям защиты:

• обеспечивать электробезопасность потребителя и обслуживающего персонала;

• защищать электронные компоненты, расположенные в устройстве от воздействия окружающей среды.

Степень механической защиты, которую обеспечивают корпуса электроприборов, классифицируется по международному стандарту пыле- и влагозащищенности International Protection ("внутренняя защита"), обозначается буквами IP и двумя цифрами.

Первая цифра определяет степень защиты от проникновения твердых механических предметов и прикосновения к токоведущим частям, вторая – от воздействия жидкости. Маркировка указывается на корпусе изделия, например IP 20 или IP 65.

Характеристики защиты приведены в Таблицах 5 и 6.

Таблица 5. Степень защиты от проникновения твердых частиц и прикосновения к токоведущим частям.

Первая цифра	Характеристики защиты	Описание
Х	Защита не определена	Открытая конструкция, без защиты от пыли и прикосновения к токоведущим частям.
1	Защита от крупных предметов	Защита от проникновения в конструкцию крупных предметов диаметром более 50 мм. Частичная защита от случайного касания токоведущих частей человеком (защита от касания ладонью).
2	Защита от предметов среднего размера	Защита конструкции от проникновения внутрь предметов диаметром более 12 мм. Защита от прикосновения пальцами к токоведущим частям.
3	Защита от мелких предметов	Конструкция не допускает проникновения внутрь предметов диаметром более 2,5 мм. Защита персонала от случайного касания токоведущих частей инструментом или пальцами.
4	Защита от песка	В конструкцию не могут попасть предметы диаметром более 1 мм. Конструкция защищает от прикосновения к токоведущим частям пальцами или инструментом.
5	Защита от накопления пыли	Пыль может проникать в корпус в незначительном количестве, не препятствующем нормальной работе оборудования. Полная защита от прикосновения к токоведущим частям оборудования.
6	Полная защита от пыли	Пыль не может проникнуть внутрь конструкции.

Таблица 6. Степень защиты от проникновения жидкостей.

Вторая цифра	Характеристики защиты	Описание
х	Защита не определена	Открытая конструкция, без защиты от брызг воды.
1	Защита от капель, падающих вертикально	Капли воды, падающие вертикально, не могут вызвать опасных последствий для оборудования.
2	Защита от капель, падающих под углом	Капли воды, падающие на оборудование под углом до 15°, не вызывают опасных последствий.
3	Защита от брызг воды	Изделие защищено от брызг воды, попадающих в конструкцию под углом до 60° .
4	Защита от разнонаправленных брызг воды	Конструкция защищена от брызг воды, которые могут быть направлены на изделие с разных сторон.
5	Защита от струй воды	Направленные струи воды не причиняют вреда размещённому в корпусе оборудованию.
6	Защита от залива водой	Залив оборудования водой не приводит к повреждению оборудования.
7	Защита от погружения	Корпус может быть полностью погружен в воду, что не приведет к повреждению размещённого в корпусе оборудования.
8	Защита от погружения в воду под давлением	Конструкция выдерживает без последствий погружение в воду на определенную глубину (защита от воды под давлением, причем величина давления указывается отдельно).

ОБЩАЯ ИНФОРМАЦИЯ

Вентиляционная продукция **BLAUBERG** отличается традиционным немецким качеством и высокотехнологичностью. На протяжении многих десятилетий Blauberg сохраняет безупречную репутацию, подтвержденную признанием мировых профессионалов.

Производственные мощности **BLAUBERG** позволяют производить весь спектр вентиляционной продукции, что обеспечивает полное соответствие и совместимость всех элементов вентиляционных систем «под ключ». Постоянное внедрение новых технологий и инновационных решений делают продукцию Blauberg самой современной и востребованной для потребителей.

Основные преимущества вентиляции BLAUBERG:

- надежность;
- качество:
- технологичность;
- современность:
- инновационность;
- комплексность;
- простота в обслуживании.
- □ Перед эксплуатацией вентиляционной продукции **BLAUBERG** внимательно изучите руководство пользователя и убедитесь в соответствии режима и условий использования его параметрам. Не допускается работа устройства при несоответствии режима эксплуатации, так как это нарушает требования безопасности.
- В конструкции вентиляторов BLAUBERG применяются синхронные и асинхронные двигатели с АС, DC и ЕС моторами. Данные двигатели надежны и долговечны, оснащены термостатами для защиты от перегрева, экономичны и имеют низкий уровень шума. Двигатели производятся из алюминия или чугуна, полностью закрыты и имеют соответствующий уровень защиты (значения смотрите в таблице характеристик каждой модели).

- □ Технические данные о напряжении, частоте, потреблении тока, номинальной мощности двигателя, типах защиты и рекомендациях по подключению приводятся в таблицах характеристик изделий. Указанные данные соответствуют нормальным условиям эксплуатации при плотности воздуха р = 1,2 кг/м³, температура T = 20 °C, частота в сети 50 Гц. При подключении устройств необходимо руководствоваться в первую очередь данными завода-изготовителя. В зависимости от условий эксплуатации и особенностей окружающей среды допускаются колебания значений в рамках допустимых отклонений.
- Подключение устройств к электросети осуществляется по заводской схеме, указанной в руководстве пользователя и соответствующей действующим нормам. Защита от перегрузки, выпадения фазы и т.д. осуществляется путем аварийного выключения двигателя, встроенных термостатов или устройств полной защиты на каждом контакте и во всех диапазонах скорости вращения. Выбор аварийного выключателя двигателя должен соответствовать заводским предписаниям. Несоблюдения данных предписаний может привести к выходу устройства из строя, а с производителя снимаются все гарантийные обязательства.
- □ Вентиляторы в стандартном исполнении предназначены для работы с воздухом умеренного загрязнения, уровня влажности и не содержащим агрессивных добавок. Температурный диапазон соответствует значениям от -30 °C до +40 °C. В случаях потенциального использования вентиляционных устройств в воздушной среде, которая не соответствует стандартным значениям, следует обратиться к производителю за индивидуальной консультацией.

- □ Для регулирования мощности вентиляторов BLAUBERG применяются тиристорные или трансформаторные регуляторы скорости вращения. Характеристики применяемых двигателей оптимально сбалансированы с применяемой крыльчаткой, что обеспечивает максимальный КПД как в режиме работы с постоянным числом оборотов, так и в режиме с регулируемой скоростью вращения.
- □ Для изготовления корпусов вентиляционных устройств **BLAUBERG** применяются такие материалы, как пластик, алюмоцинк, алюминий или сталь. В зависимости от моделей корпус может иметь полимерное покрытие, устойчивое к воздействию окружающей среды, а также быть оснащен тепло- и звукоизоляцией из минеральной ваты. В зависимости от назначения вентиляционные устройства комплектуются электрическим или водяным нагревателем со встроенными термостатами защиты от перегрева, установками для утилизации тепла (рекуператорами), фильтрами с определенным классом очистки и байпасом. Все устройства имеют крепежные элементы для удобства монтажа и откидные панели для простоты обслуживания.
- □ Гарантийный срок службы изделий составляет 12 месяцев с даты поставки. Объем гарантийных обязательств фиксируется в условиях поставки. Самостоятельное изменение конструкции изделия, нарушение рекомендаций по установке и подключению устройств снимает с производителя все гарантийные обязательства.
- Данный каталог продукции является информационно-рекламным материалом. Компания **BLAUBERG** сохраняет за собой право вносить изменения в содержание данного каталога без предварительного или дополнительного уведомления об этом коголибо из потребителей.

СЕРТИФИКАЦИЯ

Различные серии изделий имеют следующие контрольные знаки:

CE	Изделие с маркировкой СЕ означает, что продукция произведена в соответствии со стандартами качества и безопасности, предусмотренными директивами Европейского Союза для данного вида продукции (наносится производителем).		Знак соответствия продукции требованиям технических норм Украины, подтверждается сертификатами соответствия УкрЕСТ.
(4)	Знак соответствия продукции европейским стандартам качества и электрической безопасности, выданный Обществом технического надзора TUV (Германия).	C	Знак соответствия продукции, подлежащей обязательной сертификации в системе ДСТ Р, техническим стандартам и нормам, принятым на территории Российской Федерации. Подтверждается сертификатами, выданными сертификационным центром РосТЕСТ (Москва).
B	Знак соответствия продукции стандартам качества и электрической безопасности, принятым в Польше, выданный сертификационным органом РСВС (Польша).		Класс изоляции: двойная изоляция.
EE	Знак соответствия продукции словацким стандартам качества и электрической безопасности, выданный сертификационным органом EVPU (Словакия).	IP 34	Класс защиты устройства (см. таблицы 5, 6).

Канальный вентилятор смешанного типа

Turbo

Производительность — до $1750 \,\mathrm{M}^3/\mathrm{4}$

Применение

- Приточно-вытяжные системы вентиляции различных помещений.
- Для вытяжных систем помещений с повышенной влажностью (санузлы, кухни).
- 🔲 Вентиляционные каналы, требующие высокое давление, мощный воздушный поток и низкий уровень шума.
- Для воздуховодов диаметром от 100 до 315 мм.

Конструкция

- □ Корпус изготавливается из ударопрочного и стойкого к коррозии АБС пластика (Ø100-200) или полипропилена пониженной горючести (Ø250-315).
- □ Блок вентилятора с клеммной коробкой поворачивается в любую позицию.
- □ Особая конструкция корпуса позволяет извлекать блок двигатель-крыльчатка без демонтажа воздуховодов, что облегчает обслуживание вентилятора.

Двигатель

- □ Двухскоростной однофазный двигатель на подшипниках качения.
- Оснащён термопредохранителями для защиты от перегрузки.

Регулировка скорости

- □ Переключение режимов мощности при помощи встроенного переключателя (опция **US**) или внешнего переключателя для многоскоростных вентиляторов (приобретается отдельно).
- Возможна плавная регулировка оборотов при помощи встроенного регулятора (опция **FR**), внешнего тиристорного или автотрансформаторного регулятора (приобретается отдельно), подключив его к клемме максимальной скорости двигателя.

Монтаж

□ Благодаря компактной конструкции вентилятор идеален при монтаже в ограниченном пространстве, например, за подвесным потолком.

- □ Вентилятор можно установить в любом удобном месте вентиляционной системы (в начале, середине или конце воздуховодов).
- ☐ Крепление к стене или потолку при помощи специальной монтажной пластины на корпусе вентилятора.
- □ **TD** монтажный набор параллельной установки вентиляторов Turbo одного диаметра (для увеличения производительности).

□ TL – монтажный набор последовательного монтажа вентиляторов Turbo (для увеличения давления).

Модификации и опции

□ **Т** – регулируемый таймер с диапазоном задержки отключения вентилятора от 2 до 30 минут.

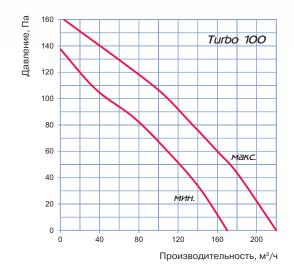
□ **US** – встроенный в вентилятор 3-х позиционный переключатель скоростей.

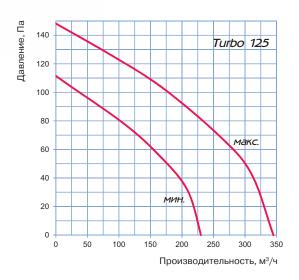
□ **FR** – встроенный регулятор плавного изменения оборотов в диапазоне 0-100%. Вентилятор оснащается шнуром питания со штекером или евровилкой (**FR1**).

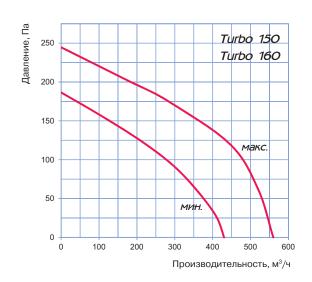
□ **G** – регулятор скорости и температуры с выносным датчиком температуры (длина кабеля 4 метра). Вентилятор оснащается шнуром питания со штекером или евровилкой (**G1**).



□ GI – регулятор скорости и температуры со встроенным в канал вентилятора датчиком температуры. Вентилятор оборудован шнуром питания со штекером или евровилкой (GI1). Опции G и GI позволяют автоматически изменять скорость вращения крыльчатки в зависимости от температуры в помещении. Оптимальное решение для вентиляции помещений, где необходим контроль температуры воздуха (теплицы и т.д).

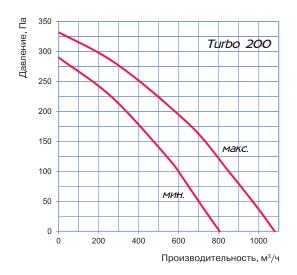

- \mathbf{W} вентилятор оснащается шнуром питания со штекером или евровилкой ($\mathbf{W1}$).
- **тах** вентилятор с двигателем повышенной мощности.

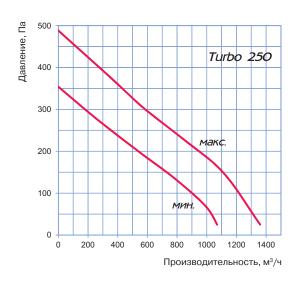

Габаритные размеры

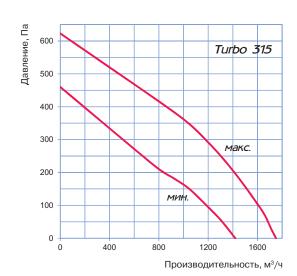


Тип		Macca,				
IVIII	ØD	ØD1	В	Н	L	КГ
Turbo 100	97	164	196	241	303	1,68
Turbo 125	123	164	196	241	258	1,79
Turbo 150	148	187	220	251	289	3,18
Turbo 160	158	187	220	251	289	3,23
Turbo 200	199	209	239	261	295,5	3,8
Turbo 250	247	257	287	323	383	7,83
Turbo 315	310	323	362	408	445	11,7

Параметры	Turbo 100		Turbo 125		Turbo 150 Turbo 160	
Скорость	мин.	макс.	мин.	макс.	мин.	макс.
Напряжение, B / 50 /60 Гц	1~ 230		1~ 230 1~ 230		1~ 230	
Потребляемая мощность, Вт	23	25	25	30	42	50
Ток, А	0,10	0,11	0,11	0,13	0,19	0,22
Максимальный расход воздуха, м ³ /ч	170	220	230	345	430	560
Частота вращения, мин ⁻¹	1980	2545	1535	2265	1940	2620
Уровень звукового давления на расст. 3 м, dB(A)	27	32	29	34	37	46
Макс. темп. перемещаемого воздуха, °C	60		60		60	
Защита	IP X4		IP X4		IP X4	







Параметры	Turbo 200		Turbo 250		Turbo 315	
Скорость	мин.	макс.	мин.	макс.	мин.	макс.
Напряжение, В / 50 /60 Гц	1~ 230		1~ 230 1~ 230		1~ 230	
Потребляемая мощность, Вт	76	108	125	177	227	315
Ток, А	0,34	0,48	0,54	0,79	0,99	1,42
Максимальный расход воздуха, м ³ /ч	805	1080	1070	1360	1420	1750
Частота вращения, мин ⁻¹	1915	2380	1955	2440	2115	2505
Уровень звукового давления на расст. 3 м, dB(A)	45	52	47	55	47	56
Макс. темп. перемещаемого воздуха, °C	60		60		60	
Защита	IP X4		IP X4		IP X4	

Канальный центробежный вентилятор

Centro

Производительность — до $1700 \, \text{м}^3/\text{ч}$

Применение

- Приточно-вытяжные системы вентиляции различных помещений.
- 🔲 Подходит для установки в вытяжные системы помещений с повышенной влажностью (санузлы, кухни).
- □ Для воздуховодов диаметром от 100 до 315 мм.

Конструкция

- □ Корпус изготавливается из ударопрочного и стойкого к коррозии АБС пластика.
- Форма корпуса аэродинамически оптимизирована.
- Герметичная монтажная коробка.
- Модель Centro 150 совместима с воздуховодами 150 и 160 мм.

Двигатель

- □ Применяется однофазный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Оснащён шариковыми подшипниками для большего срока эксплуатации.
- □ Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- Турбина динамически сбалансирована.
- □ В определённых типоразмерах доступен двигатель повышенной мощности (версия **Centro max**).
- ☐ Для вентиляции помещений с повышенными требованиями к уровню шума доступны малошумные исполнения (**Centro L**).

Регулировка скорости

- □ Плавная регулировка оборотов при помощи встроенного электронного регулятора (опция **FR**).
- □ Плавная или ступенчатая регулировка при помощи внешнего тиристорного или автотрансформаторного регулятора (приобретается отдельно).

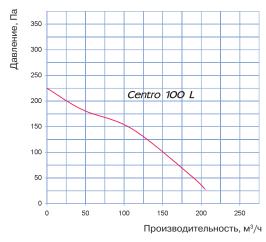
Монтаж

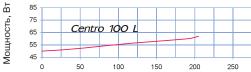
- □ Благодаря компактной конструкции вентилятор идеален при монтаже в ограниченном пространстве.
- Устанавливается без ограничений в любом положении.
- □ Крепление к стене или потолку при помощи монтажных кронштейнов, поставляемых в комплекте или проволочного держателя **Halter Centro** (приобретается отдельно).
- □ Гибкие воздуховоды закрепляются на патрубках вентилятора при помощи хомутов.

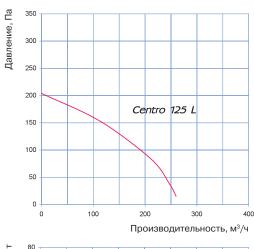
Модификации и опции

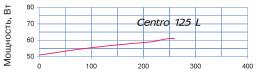
□ **FR** – встроенный регулятор плавного изменения оборотов в диапазоне 0-100%. Вентилятор оснащается шнуром питания со штекером или евровилкой (**FR1**).

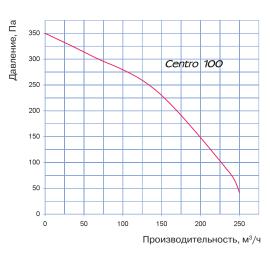
- **тах** вентилятор с двигателем повышенной мощности.
- L малошумное исполнение вентилятора.
- □ **G** регулятор скорости и температуры с выносным датчиком температуры (длина кабеля 4 метра). Вентилятор оснащается шнуром питания со штекером или евровилкой (**G1**).
- □ **GI** регулятор скорости и температуры со встроенным в канал вентилятора датчиком температуры. Вентилятор оборудован шнуром питания со штекером или евровилкой (**GI1**).

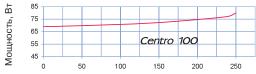



Опции G и GI позволяют автоматически изменять скорость вращения крыльчатки вентилятора в зависимости от температуры в помещении. Оптимальное решение для вентиляции помещений, где необходим контроль температуры воздуха (теплицы и т.д).

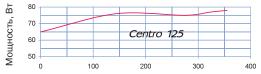

■ W – вентилятор оснащается шнуром питания со штекером или евровилкой (W1).

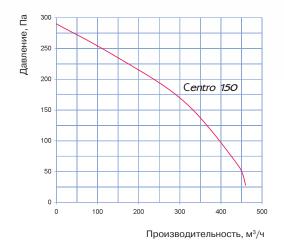


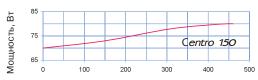

Параметры	Centro 100 L	Centro 100	Centro 125 L	Centro 125
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	62	80	61	79
Ток, А	0,38	0,34	0,38	0,34
Максимальный расход воздуха, м ³ /ч	205	250	260	355
Частота вращения, мин ⁻¹	2650	2820	2610	2800
Уровень звукового давления на расст. 3 м, dB(A)	36	46	36	46
Макс. темп. перемещаемого воздуха, °C	-25 +55	-25 +55	-25 +55	-25 +55
Защита	IP X4	IP X4	IP X4	IP X4

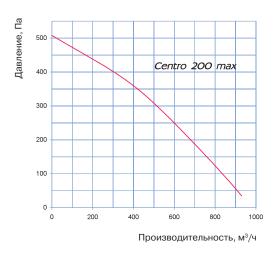


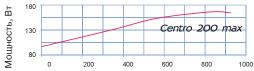


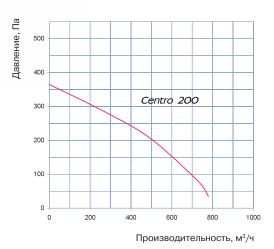


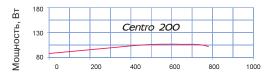


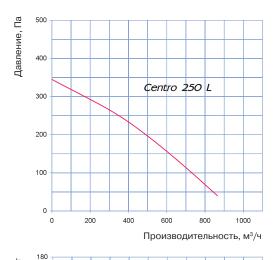


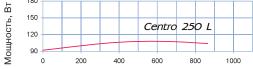


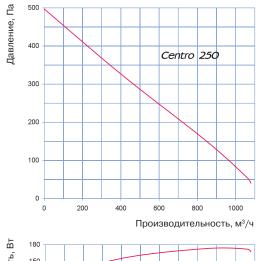


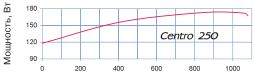

Параметры	Centro 150	Centro 200	Centro 200 max	Centro 250 L
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	80	107	173	108
Ток, А	0,35	0,47	0,76	0,47
Максимальный расход воздуха, м ³ /ч	460	780	930	865
Частота вращения, мин ⁻¹	2725	2660	2125	2560
Уровень звукового давления на расст. 3 м, dB(A)	46	48	51	51
Макс. темп. перемещаемого воздуха, °C	-25 +55	-25 +50	-25 +45	-25 +50
Защита	IP X4	IP X4	IP X4	IP X4

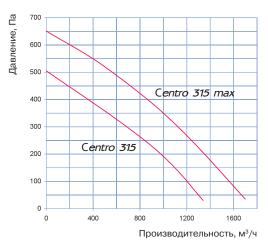


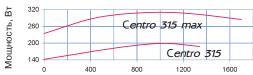




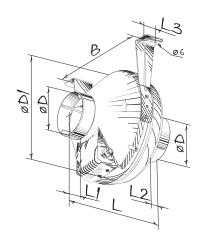


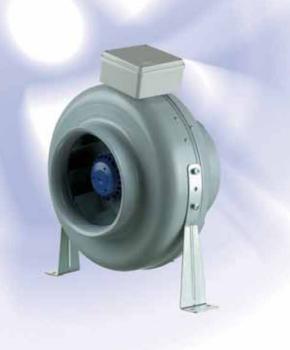






Параметры	Centro 250	Centro 315	Centro 315 max
Напряжение, В / 50 Гц	230	230	230
Потребляемая мощность, Вт	173	200	310
Ток, А	0,76	0,88	1,36
Максимальный расход воздуха, м ³ /ч	1080	1340	1700
Частота вращения, мин ⁻¹	2090	2655	2590
Уровень звукового давления на расст. 3 м, dB(A)	50	50	53
Макс. темп. перемещаемого воздуха, °C	-25 +50	-25 +50	-25 +45
Защита	IP X4	IP X4	IP X4





Габаритные размеры ...

Тип			Macca,					
IVIII	ØD	ØD1	В	L	L1	L2	L3	КГ
Centro 100 L / Centro 100	100	250	270	230	30	27	30	2,08
Centro 125 L / Centro 125	125	250	270	220	30	27	30	2,20
Centro 150	150 /160	300	310	286	30	30	30	2,45
Centro 200	200	340	354	276	30	30	40	3,00
Centro 200 max	200	340	354	276	30	30	40	3,00
Centro 250 L / Centro 250	250	340	354	265	30	30	40	4,30
Centro 315	315	400	414	276	40	55	40	4,85
Centro 315 max	315	400	414	276	40	55	40	4,85

Канальный центробежный вентилятор **Centro-M**

Производительность — до 5260 м³/ч

Применение

- Приточно-вытяжные системы вентиляции различных помещений.
- Прямой монтаж в систему вентиляционных каналов.
- Для воздуховодов диаметром от 100 до 450 мм.

Конструкция

- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской.
- Форма корпуса аэродинамически оптимизирована.
- Наружная клеммная коробка для подключения питания.

Двигатель

- Однофазный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- Турбина динамически сбалансирована.
- □ В определённых типоразмерах доступен двигатель повышенной мощности (**Centro-M max**).
- ☐ Для вентиляции помещений с повышенными требованиями к уровню шума доступны малошумные исполнения (**Centro-M L**).

Регулировка скорости

Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

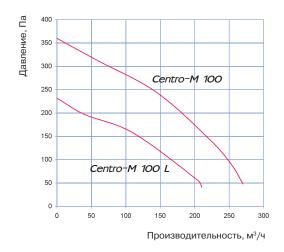
Монтаж

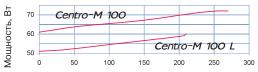
- Установка без ограничений в любом положении.
- □ Вентиляторы типоразмером от 100 до 315 мм крепятся к стене или потолку при помощи монтажных кронштейнов, поставляемых в комплекте.
- Вентиляторы типоразмером от 355 до 450 мм крепятся при помощи монтажных уголков, закреплённых на корпусе.

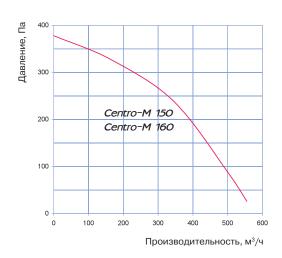
 Гибкие воздуховоды закрепляются на патрубках вентилятора при помощи хомутов.

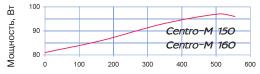
Модификации и опции

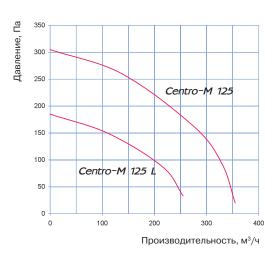
□ **FR** – встроенный регулятор плавного изменения оборотов в диапазоне 0-100%. Вентилятор оснащается шнуром питания со штекером или евровилкой (**FR1**).

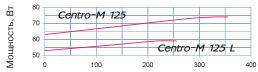

■ G – регулятор скорости и температуры с выносным датчиком температуры (длина кабеля 4 метра). Вентилятор оснащается шнуром питания со штекером или евровилкой (G1).

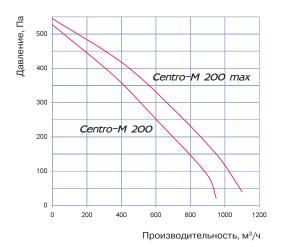


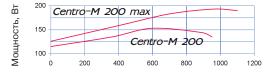

- **тах** вентилятор с двигателем повышенной мощности.
- L малошумное исполнение вентилятора.
- lacktriangled вентилятор оснащается шнуром питания со штекером или евровилкой (**W1**).

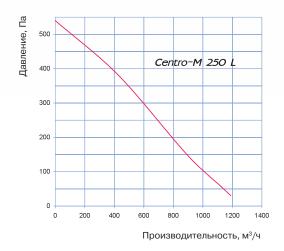


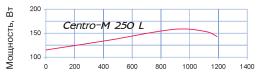

Параметры	Centro-M 100 L	Centro-M 100	Centro-M 125 L	Centro-M 125	Centro-M 150	Centro-M 160	Centro-M 200	Centro-M 200 max
Напряжение, В / 50 Гц	230	230	230	230	230	230	230	230
Потребляемая мощность, Вт	60	73	60	75	98	98	154	193
Ток, А	0,37	0,32	0,37	0,33	0,43	0,43	0,67	0,84
Максимальный расход воздуха, м ³ /ч	210	270	255	355	555	555	950	1100
Частота вращения, мин ⁻¹	2620	2830	2535	2800	2705	2660	2375	2780
Уровень звукового давления на расст. 3 м, dB(A)	36	47	36	47	47	47	48	51
Макс. темп. перемещаемого воздуха, °C	-25 +55	-25 +55	-25 +55	-25 +55	-25 +55	-25 +55	-25 +50	-25 +45
Защита	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4

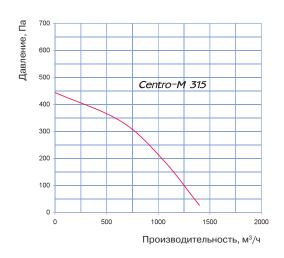


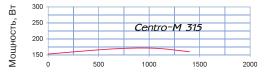


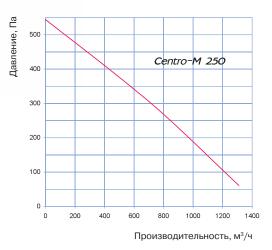


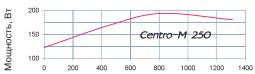


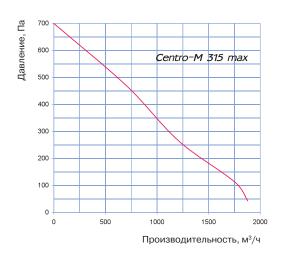


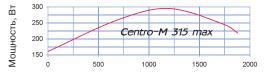


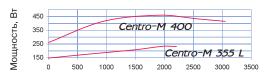


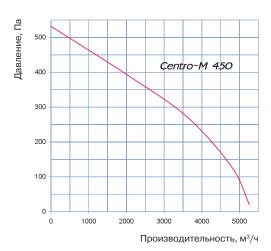

Параметры	Centro-M 250 L	Centro-M 250	Centro-M 315	Centro-M 315 max	Centro-M 355 L	Centro-M 400	Centro-M 450
Напряжение, В / 50 Гц	230	230	230	230	230	230	230
Потребляемая мощность, Вт	158	194	171	296	233	460	665
Ток, А	0,69	0,85	0,77	1,34	1,06	2,23	2,89
Максимальный расход воздуха, м ³ /ч	1190	1310	1400	1880	2210	3050	5260
Частота вращения, мин ⁻¹	2315	2790	2600	2720	1375	1370	1265
Уровень звукового давления на расст. 3 м, dB(A)	52	52	52	54	58	61	65
Макс. темп. перемещаемого воздуха, °C	-25 +50	-25 +50	-25 +50	-25 +45	-25 +45	-40 +80	-40 +70
Защита	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4

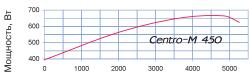


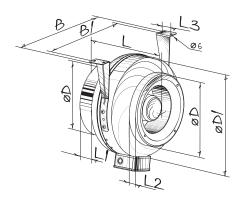


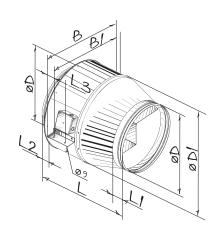












Габаритные размеры __

Centro-M 100 — Centro-M 315

Centro-M 355 — Centro-M 450

T		Размеры, мм						Macca,	
Тип	ØD	ØD1	В	B1	L	L1	L2	L3	КГ
Centro-M 100 L	98	254	298	258	205	20	25	30	3,45
Centro-M 100	98	254	298	258	205	20	25	30	3,45
Centro-M 125 L	123	254	298	258	205	20	25	30	3,58
Centro-M 125	123	254	298	258	205	20	25	30	3,58
Centro-M 150	149	304	349	309	220	25	25	30	4,17
Centro-M 160	159	304	357	317	220	25	25	30	4,32
Centro-M 200	198	344	390	350	240	25	29	40	5,70
Centro-M 200 max	198	344	390	350	250	25	29	40	5,70
Centro-M 250 L	248	344	390	350	249	25	31	40	5,09
Centro-M 250	248	344	390	350	249	25	31	40	5,09
Centro-M 315	314	404	454	414	260	25	40	40	7,30
Centro-M 315 max	314	404	454	414	288	25	40	40	7,30
Centro-M 355 L	353	460	522	522	506	60	60	70	18,80
Centro-M 400	398	570	663	634	570	60	60	70	25,10
Centro-M 450	448	608	700	670	644	60	60	80	27,26

Канальный центробежный вентилятор с EC-мотором

Centro-M EC

Производительность – до 1460 м³/ч

Применение

- □ Приточно-вытяжные системы вентиляции различных помещений.
- Прямой монтаж в систему вентиляционных каналов.
- □ Для создания экономичных и управляемых систем вентиляции.
- Для воздуховодов диаметром от 160 до 315 мм.

Конструкция

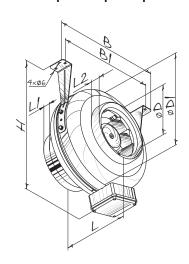
- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской.
- Форма корпуса аэродинамически оптимизирована.
- Наружная клеммная коробка для подключения питания.

Двигатель

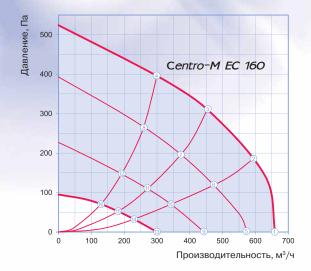
- Высокоэффективный ЕС-мотор постоянного тока с внешним ротором и рабочим колесом с назад загнутыми лопатками.
- □ ЕС-технологии отвечают самым последним требованиям для создания энергосберегающей и высокоэффективной вентиляции.
- □ Потребление электроэнергии EC-моторов на 35% меньше, чем у обычных двигателей, при этом КПД достигает 90%.
- EC-моторы отличаются высокой производительностью, низким уровнем шума и оптимальным управлением во всём диапазоне скоростей вращения.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

Управление и регулировка скорости

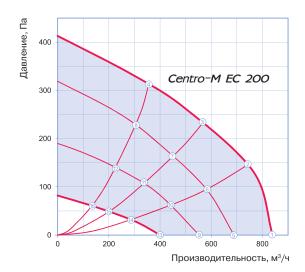
- Вентилятор управляется при помощи внешнего управляющего сигнала 0-10 В (например, регулятора для ЕС-моторов CDT E/0-10).
- □ Регулировка производительности в зависимости от различных параметров (уровень температуры, давление, задымленность и т.д).
- □ При изменении управляющего параметра ЕС-мотор изменяет скорость вращения для обеспечения оптимального расхода воздуха.
- □ Вентилятор может работать в электрической сети с частотой 50 Гц и 60 Гц. Возможен обмен данными между ПК и вентилятором для задания и контроля рабочих характеристик.
- Вентиляторы с ЕС-моторами можно объединять в единую компьютерную сеть для централизованного управления вентиляцией, что позволяет настроить систему в соответствии с требованиями конкретного пользователя.


Монтаж

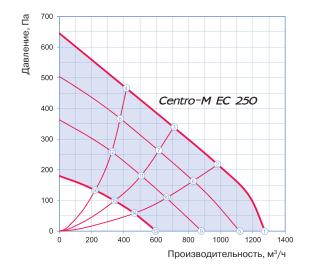
- □ Установка без ограничений в любом положении.
- Вентиляторы крепятся к поверхности при помощи монтажных кронштейнов, поставляемых в комплекте.
- □ Гибкие воздуховоды закрепляются на патрубках вентилятора при помощи хомутов.



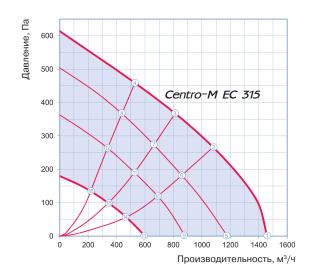
Параметры	Centro-M EC 160	Centro-M EC 200	Centro-M EC 250	Centro-M EC 315
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	80	84	161	160
Ток, А	0,58	0,49	0,94	0,94
Максимальный расход воздуха, м ³ /ч	660	840	1275	1460
Частота вращения, мин ⁻¹	3250	2490	2700	2780
Уровень звукового давления на расст. 3 м, dB(A)	45	50	46	48
Макс. темп. перемещаемого воздуха, °C	-25 +60	-25 +60	-25 +60	-25 +60
Защита	IP X4	IP X4	IP X4	IP X4


Габаритные размеры _

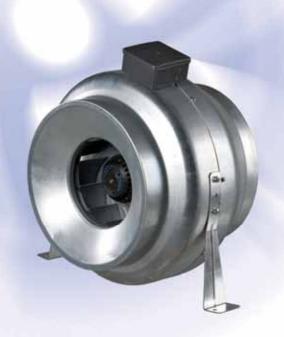
Тип		Размеры, мм							Macca,	
IVIII	ØD	ØD1	Н	В	B1	L	L1	L2	L3	КГ
Centro-M EC 160	159	304	360	351	311	200	25	25	30	5,9
Centro-M EC 200	198	344	437	390	350	238	25	25	40	7,1
Centro-M EC 250	248	344	437	390	350	249	30	25	40	8,0
Centro-M EC 315	313	404	466	450	410	259	30	30	40	8,5



точка	n, (мин ⁻¹)	Р, (Вт)
1	3260	70
2	3190	77
3	3130	80
4	3170	77
5	2610	36
6	2560	40
7	2500	41
8	2530	40
9	1960	15
10	1910	16
11	1880	17
12	1890	16
13	1310	4
14	1280	5
15	1250	5
16	1280	5



точка	n, (мин ⁻¹)	Р, (Вт)
1	2780	64
2	2630	75
3	2510	84
4	2520	83
5	2220	33
6	2090	39
7	2000	43
8	2010	42
9	1670	14
10	1560	16
11	1500	18
12	1510	18
13	1110	4
14	1060	5
15	1000	6
16	1010	6



точка	n, (мин ⁻¹)	Р, (Вт)
1	2760	123
2	2670	146
3	2610	161
4	2680	146
5	2460	88
6	2380	106
7	2340	116
8	2400	105
9	2000	53
10	1960	62
11	1940	69
12	1965	61
13	1380	22
14	1360	25
15	1350	28
16	1360	25

точка	n, (мин ⁻¹)	Р, (Вт)
1	2750	121
2	2660	145
3	2600	160
4	2670	145
5	2450	85
6	2370	103
7	2330	112
8	2390	101
9	1990	49
10	1950	61
11	1930	65
12	1955	60
13	1370	21
14	1350	22
15	1340	25
16	1350	24

Канальный центробежный вентилятор **Centro-MZ**

Производительность — до 1540 м³/ч

Применение

- Приточно-вытяжные системы вентиляции различных помещений.
- 🔲 Оптимален для применения во влажных помещениях (санузлы, кухни и т.д) или при наружном монтаже на улице.
- Для воздуховодов диаметром от 100 до 315 мм.

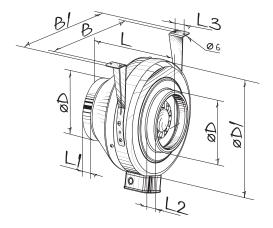
Конструкция

- Корпус изготавливается из оцинкованной стали.
- Форма корпуса аэродинамически оптимизирована.
- Наружная клеммная коробка для подключения питания.

Двигатель

- □ Однофазный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.
- ☐ Для вентиляции помещений с повышенными требованиями к уровню шума доступны малошумные исполнения (**Centro-MZ L**).

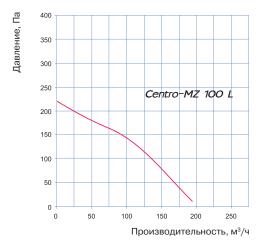
Регулировка скорости

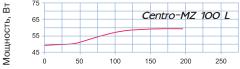

□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

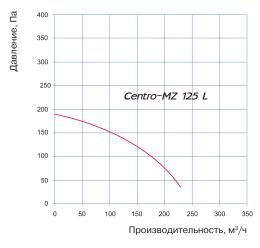
Монтаж

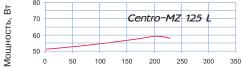
- □ Установка без ограничений в любом положении.
- Вентилятор закрепляется к стене или потолку при помощи монтажных кронштейнов, поставляемых в комплекте.
- □ Гибкие воздуховоды закрепляются на патрубках вентилятора при помощи хомутов.

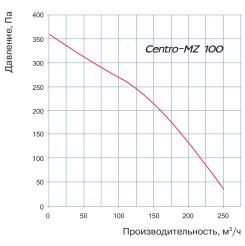
Модификации и опции :

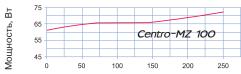

- L малошумное исполнение вентилятора.
- W вентилятор оснащается шнуром питания со штекером или евровилкой (W1).

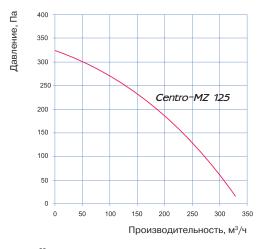


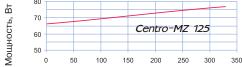

Тип		Размеры, мм							
I VII I	ØD	ØD1	В	B1	L	L1	L2	L3	КГ
Centro-MZ 100 L	98	237	253	293	202	23	22	30	3,16
Centro-MZ 100	98	237	253	293	202	23	22	30	3,16
Centro-MZ 125 L	123	237	253	293	202	23	22	30	3,16
Centro-MZ 125	123	237	253	293	202	23	22	30	3,16
Centro-MZ 150	148	278	294	334	200	25	23	30	3,42
Centro-MZ 160	158	278	294	334	200	25	23	30	3,44
Centro-MZ 200 L	198	332	340	380	245	25	29	40	5,43
Centro-MZ 200	198	332	340	380	245	25	29	40	5,43
Centro-MZ 250 L	249	332	340	380	213	25	29	40	5,25
Centro-MZ 250	249	332	340	380	213	25	29	40	5,25
Centro-MZ 315 L	313	402	410	450	308	33	55	40	6,57
Centro-MZ 315	313	402	410	450	308	33	55	40	6,57

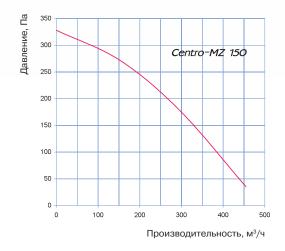


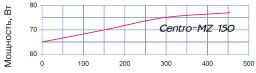

Параметры	Centro-MZ 100 L	Centro-MZ 100	Centro-MZ 125 L	Centro-MZ 125
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	60	72	60	78
Ток, А	0,37	0,32	0,37	0,34
Максимальный расход воздуха, м ³ /ч	195	250	230	330
Частота вращения, мин ⁻¹	2670	2820	2605	2820
Уровень звукового давления на расст. 3 м, dB(A)	35	46	35	46
Макс. темп. перемещаемого воздуха, °C	-25 +55	-25 +55	-25 +55	-25 +55
Защита	IP X4	IP X4	IP X4	IP X4

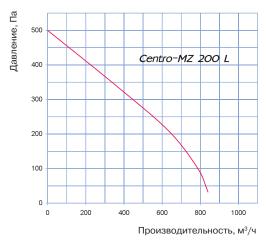


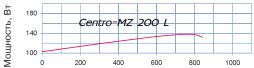


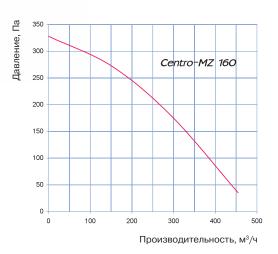


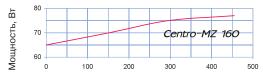


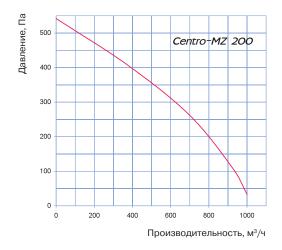


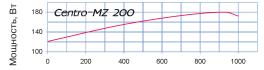


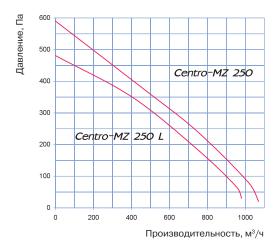


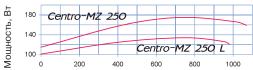

Параметры	Centro-MZ 150	Centro-MZ 160	Centro-MZ 200 L	Centro-MZ 200
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	75	78	139	157
Ток, А	0,33	0,34	0,61	0,69
Максимальный расход воздуха, м ³ /ч	455	455	840	1000
Частота вращения, мин ⁻¹	2770	2760	2790	2740
Уровень звукового давления на расст. 3 м, dB(A)	46	46	48	50
Макс. темп. перемещаемого воздуха, °C	-25 +55	-25 +55	-25 +50	-25 +45
Защита	IP X4	IP X4	IP X4	IP X4

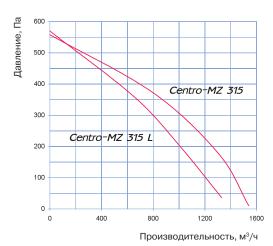


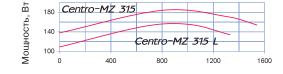












Параметры	Centro-MZ 250 L	Centro-MZ 250	Centro-MZ 315 L	Centro-MZ 315
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	134	152	151	185
Ток, А	0,59	0,66	0,66	0,81
Максимальный расход воздуха, м ³ /ч	980	1070	1330	1540
Частота вращения, мин ⁻¹	2785	2765	2680	2730
Уровень звукового давления на расст. 3 м, dB(A)	51	52	52	53
Макс. темп. перемещаемого воздуха, °C	-25 +50	-25 +50	-25 +50	-25 +45
Защита	IP X4	IP X4	IP X4	IP X4

Канальный центробежный вентилятор Box

Производительность — до 553 м³/ч

Применение

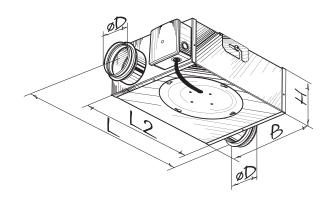
- Приточные и вытяжые системы вентиляций небольших помещений.
- Для монтажа в ограниченном пространстве.
- Для воздуховодов от 100 до 160 мм.

Конструкция

- □ Компактный корпус изготавливается из стали и окрашивается специальной полимерной краской.
- В зависимости от модели максимальная высота корпуса составляет от 110 до 175 мм.
- Форма корпуса аэродинамически оптимизирована.
- Наружная клеммная коробка для подключения питания.
- □ Откидывающаяся крышка на петлях обеспечивает удобный доступ к двигателю (для сервисного обслуживания) без демонтажа вентилятора и воздуховодов.
- Присоединительные патрубки вентилятора оснащены резиновыми уплотнителями.

Двигатель

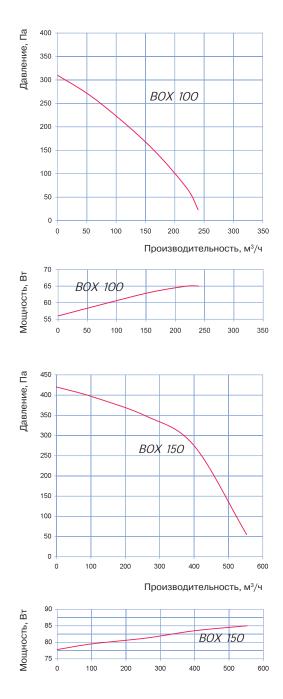
- □ Однофазный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

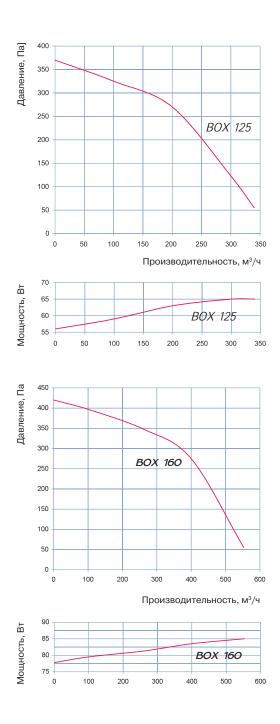

Регулировка скорости

□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

Монтах

- Благодаря компактной конструкции вентилятор идеален при монтаже в ограниченном пространстве, например, за подвесным потолком.
- □ Устанавливается без ограничений в любом положении.
- □ Вентилятор крепится к стене или потолку при помощи монтажного кронштейна поставляемого в комплекте.
- □ Гибкие воздуховоды закрепляются на патрубках вентилятора при помощи хомутов.





Тип	Размеры, мм							
ТИП	ØD	В	Н	L	L2	КГ		
Box 100	99	260	110	352	253	3,2		
Box 125	124	255	145	420	322	4,5		
Box 150	149	305	175	480	382	5,4		
Box 160	159	305	175	480	382	5,5		

Параметры	Box 100	Box 125	Box 150	Box 160
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	58	58	85	85
Ток, А	0,26	0,26	0,38	0,38
Максимальный расход воздуха, м ³ /ч	240	340	553	553
Частота вращения, мин ⁻¹	2500	2500	2600	2600
Уровень звукового давления на расст. 3 м, dB(A)	47	48	50	50
Макс. темп. перемещаемого воздуха, °C	-25 +50	-25 +50	-25 +40	-25 +40
Защита	IP X4	IP X4	IP X4	IP X4

Канальный центробежный вентилятор Box-R

Производительность — до $176 \,\mathrm{M}^3/\mathrm{4}$

Применение

- Приточные и вытяжые системы вентиляций небольших помещений.
- Высоконапорный канальный вентилятор в системах вентиляции многоэтажных зданий.
- Для монтажа в ограниченном пространстве.
- Вытяжка воздуха из нескольких помещений одновременно.
- Для воздуховодов диаметром 80 или 100 мм.

Конструкция

- □ Сверхкомпактный корпус изготавливается из стали и окрашивается специальной полимерной краской.
- Минимальная высота корпуса составляет всего 90 мм.
- Форма корпуса аэродинамически оптимизирована.
- Наружная клеммная коробка для подключения питания.
- Откидывающаяся крышка на петлях обеспечивает удобный доступ к двигателю для сервисного обслуживания.
- □ Различные варианты исполнения корпуса с количеством всасывающих патрубков от 1 до 6.
- Присоединительные патрубки вентилятора оснащены резиновыми уплотнителями.

Двигатель

- □ Однофазный трёхскоростной двигатель с внешним ротором и центробежным рабочим колесом из оцинкованной стали.
- □ Рабочее колесо имеет вперёд загнутые лопатки для обеспечения высокого давления в канале.
- Турбина оснащена функцией поддержания постоянного расхода воздуха при переменном сопротивлении в канале.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- Турбина динамически сбалансирована.

Регулировка скорости .

- □ Скорость вращения вентилятора изменяется автоматически в зависимости от сопротивления в канале, что обеспечивает постоянный расход воздуха.
- □ При дополнительной установке 3-х позиционного переключателя возможно ручное управление тремя скоростями вращения двигателя.
- □ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно). Подключаются к клемме максимальной скорости двигателя.

Монтаж

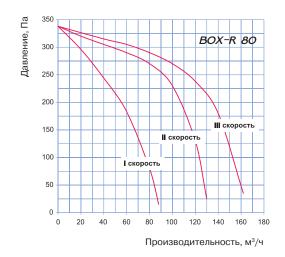
- □ Благодаря компактной конструкции вентилятор идеален при монтаже в ограниченном пространстве, например, за подвесным потолком
- □ Установка без ограничений в любом положении.
- Вентилятор крепится к стене или потолку при помощи монтажного кронштейна поставляемого в комплекте.
- □ Гибкие воздуховоды закрепляются на патрубках вентилятора при помощи хомутов.

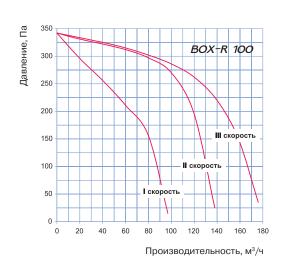
Модификации

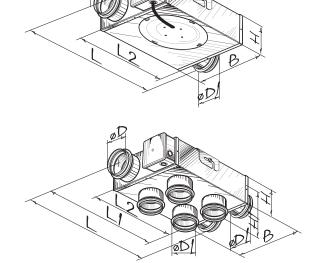
1 всасывающий патрубок Ø 80 или 100 мм

2 всасывающих патрубка Ø 80 или 100 мм

4 всасывающих патрубка Ø 80 или 100 мм


5 всасывающих патрубка Ø 80 или 100 мм




6 всасывающих патрубка Ø 80 или 100 мм

Параметры	Box-R 80		Box-R 100			
Скорость	1	2	3	1	2	3
Напряжение, В / 50 Гц	230	230	230	230	230	230
Потребляемая мощность, Вт	20	26	45	20	26	45
Ток, А	0,32	0,34	0,4	0,32	0,34	0,4
Максимальный расход воздуха, м ³ /ч	88	130	162	97	138	176
Частота вращения, мин ⁻¹	1400	1800	2600	1400	1800	2600
Уровень звукового давления на расст. 3 м, dB(A)	32	35	43	33	36	44
Макс. темп. перемещаемого воздуха, °С	50	50	50	50	50	50
Защита	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4

T		Размеры, мм								
Тип	ØD	ØD1	В	Н	H1	L	L1	L2	КГ	
Box-R 80	79	79	260	90	-	352	-	253	3,2	
Box-R 80/80x2	79	2x79	260	90	-	352	-	253	3,1	
Box-R 80/80x4	79	2x79	260	90	150	-	302	253	3,4	
Box-R 80/80x5	79	5x79	260	90	150	352	-	253	3,5	
Box-R 80/80x6	79	6x79	260	90	150	352	-	253	3,6	
Box-R 100	99	99	260	110	-	352	-	253	3,2	
Box-R 100/80x2	99	2x79	260	110	-	352	-	253	3,1	
Box-R 100/80x4	99	4x79	260	110	170	-	302	253	3,1	
Box-R 100/80x5	99	5x79	260	110	170	352	-	253	3,7	
Box-R 100/80x6	99	6x79	260	110	150	352	-	253	3,6	
Box-R 100/100x2	99	2x99	260	110	-	352	-	253	3,1	
Box-R 100/100x4	99	4x99	260	110	170	-	302	253	3,4	
Box-R 100/100x5	99	5x99	260	110	170	352	-	253	3,5	
Box-R 100/100x6	99	6x99	260	110	170	352	-	253	3,5	

Вытяжной центробежный вентилятор

Box-D

Производительность — до 310 м³/ч

Применение

- Вытяжные системы вентиляции различных помещений.
- Для монтажа в подвесные потолки.
- Для воздуховодов диаметром 100 или 125 мм.

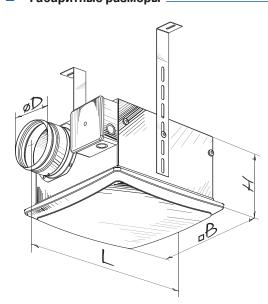
Конструкция

- □ Компактный корпус изготавливается из оцинкованной стали.
- □ Лицевая панель выполнена из АБС пластика и оборудована сменным защитным фильтром.
- Фильтр защищает двигатель, крыльчатку и воздуховод от попадания загрязняющих веществ.
- Вентилятор оборудован пружинным клапаном для предотвращения обратной тяги.
- Присоединительный патрубок оснащён резиновым уплотнителем.
- Наружная клеммная коробка для подключения питания.

Двигатель

- Однофазный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- Турбина динамически сбалансирована.

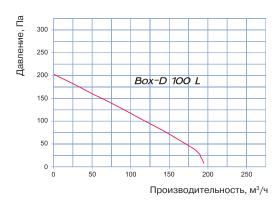
Регулировка скорости

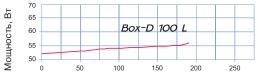

Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

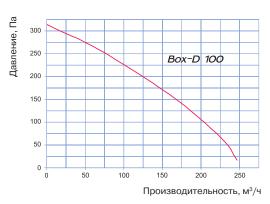
Монтаж

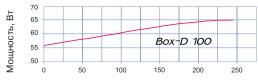
- □ Вентилятор монтируется между перекрытием и подвесным потолком при помощи монтажных кронштейнов поставляемых в комплекте.
- □ Подача питания на вентилятор осуществляется через наружную клеммную коробку.
- □ Гибкий воздуховод соответствующего диаметра закрепляется на патрубке вентилятора при помощи хомута.

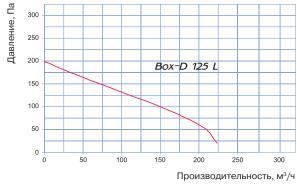
Модификации и опции ...

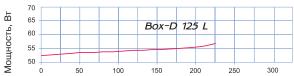

■ L – малошумное исполнение вентилятора.

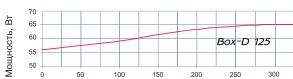


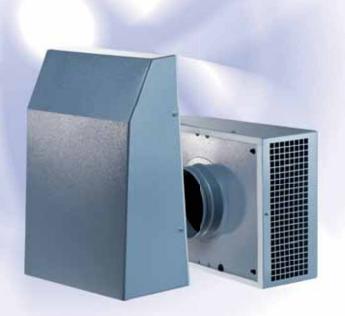

Tun	Тип Размеры, мм							
I VII I	ØD B H L							
Box-D 100 L	100	240	160	305	2,9			
Box-D 100	100	240	160	305	3,2			
Box-D 125 L	125	240	160	305	2,9			
Box-D 125	125	240	160	305	3,2			




Параметры	Box-D 100 L	Box-D 100	Box-D 125 L	Box-D 125
Напряжение, В / 50 Гц	1~ 230	1~ 230	1~ 230	1~ 230
Потребляемая мощность, Вт	56	61	56	61
Ток, А	0,34	0,26	0,34	0,26
Максимальный расход воздуха, м ³ /ч	190	240	225	310
Частота вращения, мин ⁻¹	2300	2500	2300	2500
Уровень звукового давления на расст. 3 м, dB(A)	42	47	43	48
Макс. темп. перемещаемого воздуха, °C	-25 +45	-25 +50	-25 +45	-25 +50
Защита	IP X4	IP X4	IP X4	IP X4







Вытяжной центробежный вентилятор **Extero**

Производительность — до 710 м³/ч

Применение

- Вытяжные системы вентиляции различных помещений.
- □ Для монтажа с внешней стороны наружных стен.
- Для воздуховодов диаметром от 100 до 200 мм.

Конструкция

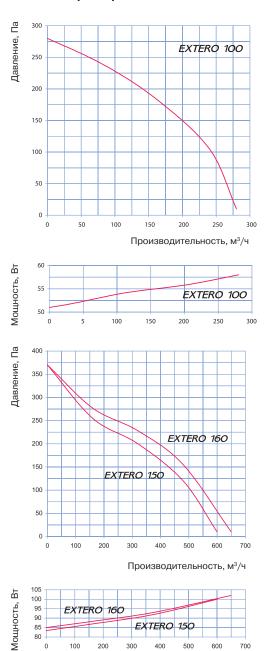
- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской.
- □ Специальная конструкция корпуса обеспечивает защиту двигателя от прямого попадания влаги.
- □ На тыльную сторону корпуса нанесен специальный уплотнитель для плотного прилегания к стене.
- Воздух выводится вертикально вниз, через решётку с защитной сеткой от птиц и грызунов.
- Присоединительный патрубок оснащен резиновым уплотнителем.

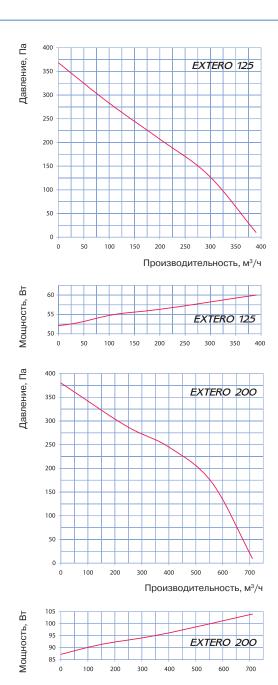
Двигатель

- Однофазный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.

- □ Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

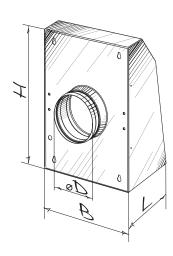
Регулировка скорости


Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно). Подключаются к клемме максимальной скорости двигателя.


Монтаж

- Вентилятор устанавливается вертикально на наружные стены зланий
- □ Гибкий воздуховод соответствующего диаметра закрепляется на патрубке вентилятора при помощи хомута.
- □ На стене закрепляется монтажная пластина вентилятора с присоединённым воздуховодом и осуществляется подводка питания через наружные клеммы. Затем одевается и фиксируется защитный кожух на монтажной пластине.

Параметры	Extero 100	Extero 125	Extero 150	Extero 160	Extero 200
Напряжение, В / 50 Гц	230	230	230	230	230
Потребляемая мощность, Вт	58	60	100	102	104
Ток, А	0,26	0,27	0,43	0,44	0,45
Максимальный расход воздуха, м ³ /ч	280	390	600	650	710
Частота вращения, мин ⁻¹	2500	2500	2600	2600	2600
Уровень звукового давления на расст. 3 м, dB(A)	54	54	58	60	62
Макс. темп. перемещаемого воздуха, °C	55	55	55	55	55
Защита	IP X4				



Габаритные размеры

100

300

Тип		Размеры, мм							
ТИП	ØD	В	Н	L	КГ				
Extero 100	99	260	355	138	4,1				
Extero 125	124	260	355	138	4,1				
Extero 150	149	300	400	138,2	4,5				
Extero 160	159	300	400	138,2	4,5				
Extero 200	199	300	400	138,2	4,5				

Шумоизолированный центробежный вентилятор

Iso

Производительность — до $1500 \,\mathrm{M}^3/\mathrm{4}$

_	_			
	При	MACH	ПОП	IA O
	III	IVICI	СП	

- 🔲 Приточно-вытяжные системы вентиляции различных помещений с высокими требованиями к уровню шума.
- Для воздуховодов диаметром от 100 до 315 мм.

Конструкция

- □ Корпус изготавливается из алюмоцинка с тепло- и звукоизоляцией из пенополистирола.
- Присоединительные патрубки оснащены резиновыми уплотнителями.
- Вентилятор оснащается шнуром питания (100-250 типоразмер) или клеммной коробкой (315 типоразмер).

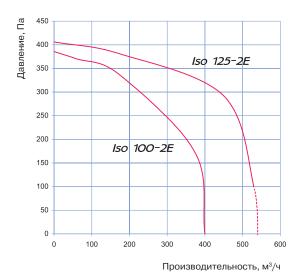
Двигатель

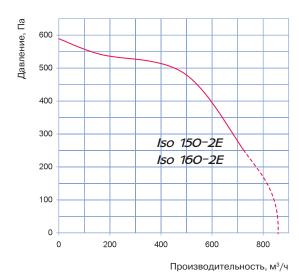
- 2-х или 4-х полюсный асинхронный двигатель с внешним ротором и центробежным рабочим колесом с вперёд загнутыми лопатками.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

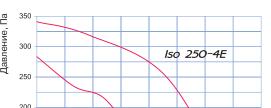
Регулировка скорости

□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

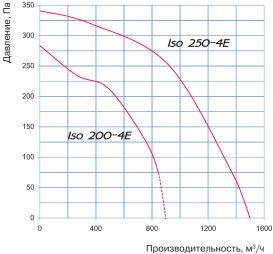
Монтаж

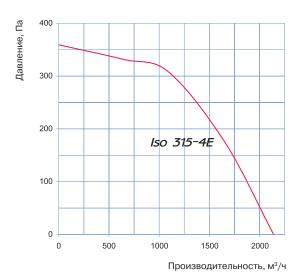

- Вентилятор устанавливается в любом положении и крепится к стене или потолку при помощи монтажного кронштейна поставляемого в комплекте.
- □ Гибкие воздуховоды соответствующего диаметра закрепляются на патрубках вентилятора при помощи хомутов.

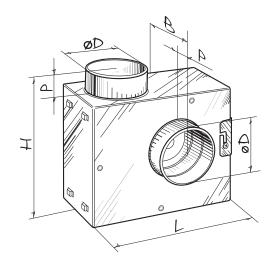

Модификации и опции :


- □ **G** регулятор скорости и температуры с выносным датчиком температуры (длина кабеля 4 метра). Вентилятор оснащается шнуром питания со штекером или евровилкой (**G1**).
- □ GI регулятор скорости и температуры со встроенным датчиком температуры в канал вентилятора. Вентилятор оснащается шнуром питания со штекером или евровилкой (GI1). Опции G и GI позволяют автоматически изменять скорость вращения крыльчатки вентилятора в зависимости от температуры в помещении. Оптимальное решение для вентиляции помещений, где необходим контроль температуры воздуха (теплицы и т.д).
- W вентилятор оснащается шнуром питания со штекером или евровилкой (W1).

Параметры	Iso 100-2E	Iso 125-2E	Iso 150-2E	Iso 160-2E	Iso 200-4E	Iso 250-4E	Iso 315-4E
Напряжение, В / 50 Гц	230	230	230	230	230	230	230
Потребляемая мощность, Вт	115	120	260	260	110	395	570
Ток, А	0,51	0,52	1,16	1,16	0,45	1,98	2,48
Максимальный расход воздуха, м ³ /ч	400	530	730	730	850	1500	2140
Частота вращения, мин ⁻¹	2650	2650	2600	2600	1300	1330	1325
Уровень звукового давления на расст. 3 м, dB(A)	36,1	38,3	39,4	37,9	29,1	35,5	43,7
Макс. темп. перемещаемого воздуха, °C	-25 +40	-25 +40	-25 +40	-25 +40	-25 +40	-25 +40	-40 +55
Защита	IPX4						







Тип		Р	азмеры, м	М		Macca,
1 711 1	ØD	В	Н	L	Р	КГ
Iso 100-2E	99	184	308	310	48	4,22
Iso 125-2E	123	204	308	310	48	4,57
Iso 150-2E	148	231	343	358	48	6,28
Iso 160-2E	158	231	343	358	48	6,28
Iso 200-4E	198	282	408	445	48	8,25
Iso 250-4E	248	330	500	525	48	10,50
Iso 315-4E	314	392	495	535	48	17,0

Шумоизолированный центробежный вентилятор ISO-B

Производительность — до 2150 м³/ч

	_						
	٦p	IN	MA	Эμ	AI	41/	10

- 🔲 Приточно-вытяжные системы вентиляции различных помещений с высокими требованиями к уровню шума.
- □ Для воздуховодов диаметром от 100 до 315 мм.
- Оптимален при ограниченном пространстве для монтажа.

Конструкция

- □ Корпус изготавливается из оцинкованной стали с тепло- и звукоизоляцией толщиной 30 мм из негорючего пенополиуритана.
- Присоединительные патрубки оснащены резиновыми уплотнителями.
- Предусмотрены крепёжные кронштейны для монтажа.

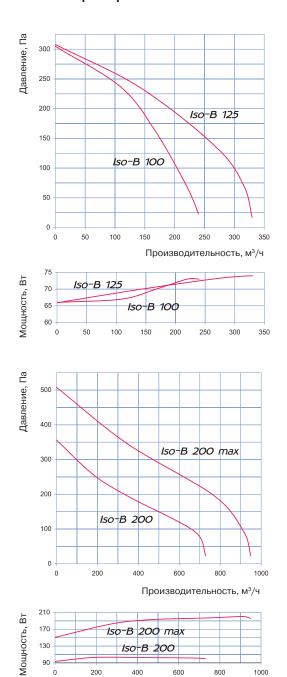
Двигатель

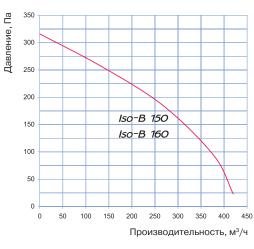
- 2-х полюсный асинхронный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- ☐ Двигатель установлен на специальных виброопорах для уменьшения виброшума.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- Турбина динамически сбалансирована.

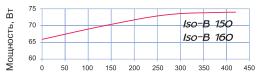
Регулировка скорости .

Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

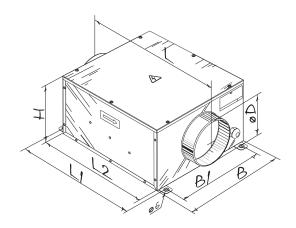
Монтаж


- Вентилятор устанавливается в любом положении и крепится к стене или потолку при помощи монтажных кронштейнов на корпусе.
- □ Гибкие воздуховоды соответствующего диаметра закрепляются на патрубках вентилятора при помощи хомутов.
- □ Питание вентилятора подключается через выносную клеммную коробку.


Модификации и опции _


- □ **G** регулятор скорости и температуры с выносным датчиком температуры (длина кабеля 4 метра). Вентилятор оснащается шнуром питания со штекером или евровилкой (**G1**).
- □ GI регулятор скорости и температуры со встроенным датчиком температуры в канал вентилятора. Вентилятор оснащается шнуром питания со штекером или евровилкой (GI1). Опции G и GI позволяют автоматически изменять скорость вращения крыльчатки вентилятора в зависимости от температуры в помещении. Оптимальное решение для вентиляции помещений, где необходим контроль температуры воздуха (теплицы и т.д).
- \square **W** вентилятор оснащается шнуром питания со штекером или евровилкой (**W1**).
- max двигатель повышенной мощности.

Параметры	Iso-B 100	Iso-B 125	Iso-B 150	Iso-B 160	Iso-B 200	Iso-B 200 max	Iso-B 250	Iso-B 315
Напряжение, В / 50 Гц	230	230	230	230	230	230	230	230
Потребляемая мощность, Вт	73	73	72	75	103	195	198	322
Ток, А	0,32	0,32	0,32	0,33	0,45	0,85	0,87	1,40
Максимальный расход воздуха, м ³ /ч	240	330	420	420	730	950	1300	2150
Частота вращения, мин ⁻¹	2560	2590	2600	2690	2550	2570	2420	2670
Уровень звукового давления на расст. 3 м, dB(A)	33	35	36	36	38	41	41	43
Макс. темп. перемещаемого воздуха, °С	-25 +55	-25 +55	-25 +55	-25 +55	-25 +50	-25 +45	-25 +50	-25 +45
Защита	IP X4	IP X4	IP X4					



эсть, Вт	320 260 200		Iso-B 315		
Мощн	140	500	250 1000	1500	2000

Тип		Размеры, мм							
I VIII	ØD	В	B1	Н	L	L1	L2	КГ	
Iso-B 100	99	322	280	192	447	380	350	5,4	
Iso-B 125	124	322	280	192	447	380	350	5,4	
Iso-B 150	149	352	310	212	477	410	380	6,4	
Iso-B 160	159	352	310	212	477	410	380	6,4	
Iso-B 200	199	432	368	287	588	506	480	10,0	
Iso-B 200 max	199	432	368	287	588	506	480	12,0	
Iso-B 250	249	432	368	287	588	506	480	12,5	
Iso-B 315	314	502	438	397	648	566	540	15,5	

Шумоизолированный центробежный вентилятор

Iso-V

Производительность — до 16870 м³/ч

Применение

- 🔲 Приточные и вытяжные системы вентиляции различных помещений с высокими требованиями к уровню шума.
- Oптимален для построения различных конфигураций вентиляционных систем, благодаря специальной трансформируемой конструкции корпуса.
- □ Может использоваться как отдельный компонент для наборной приточно-вытяжной установки.
- □ Совместим с круглыми воздуховодами диаметром от 355 до 710 мм или квадратными сечением от 500х500 до 1000х1000 мм.

Конструкция

- □ Корпус изготавливается из алюминиевого каркаса и съемных тепло- звукоизоляционных двухслойных панелей из алюмоцинка.
- □ Изоляция корпуса выполнена из негорючей минеральной ваты толщиной 20 мм.
- □ Возможно изменение положения съёмных панелей для направления воздуха линейно или под углом в 90°.
- □ Благодаря повышенным коррозионностойким свойствам теплоизолированного корпуса, вентилятор можно использовать для наружного монтажа.
- □ К вентилятору можно присоединять виброгасящие вставки квадратного сечения (серия **AKV**) или вставки-переходники с квадратного на круглое сечение (серия **ARV**), которые заказываются отдельно.
- □ Круглый патрубок вставки-переходника (серия ARV) оснащён резиновым уплотнителем для герметичного соединения.

Двигатель

- 2-х, 4-х или 6-ти полюсные асинхронный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- ☐ Тепловая защита от перегрева осуществляется при помощи встроенных термоконтактов с выведенными клеммами для подключения внешних устройств защиты.

- □ Выводы термоконтактов предназначены для подключения в соответствующие цепи контактера, реле перегрузки или к определённым клеммам автотрансформаторного или тиристорного регулятора.
- □ В модели **Iso-V 355 4E** применяются термоконтакты с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

Регулировка скорости

□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

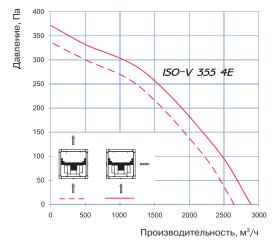
Монтаж

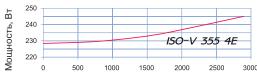
- □ Вентилятор монтируется с квадратными или круглыми воздуховодами.
- □ Присоединение к воздуховодам осуществляется при помощи гибких виброгасящих вставок или вставок-переходников соответствующего сечения.
- □ Подача питания на вентилятор осуществляется через наружную клеммную коробку.
- Вентилятор можно устанавливать в любом положении в соответствии с направлением потока воздуха, предварительно предусмотрев доступ для обслуживания.

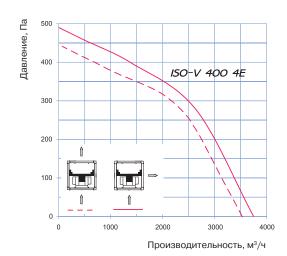
Модификации и опции

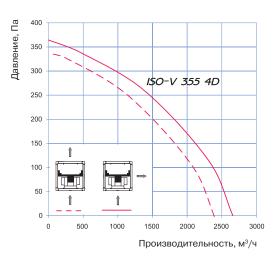
max – двигатель повышенной мощности.

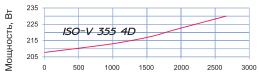
Вентиляторы Iso-V со вставками-переходниками серии ARV

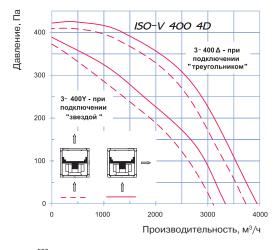


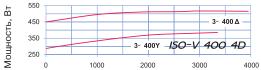


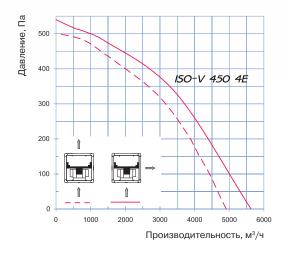

Вентиляторы Iso-V с гибкими виброгасящими вставками серии AKV

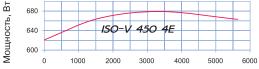

Параметры	Iso-V 355 4E	Iso-V 355 4D	Iso-V 400 4E	Iso-V 400 4D	
Напряжение, В / 50/60 Гц	1~ 230	3~ 400	1~ 230	3~ 400 △	3~ 400 Y
Потребляемая мощность, Вт	245	230	480	515	385
Ток, А	1,12	0,52	2,40	1,41	0,70
Макс. расход воздуха, м³/ч при потоке воздуха: - перпендикулярно	2890	2660	3750	3950	3340
- прямо	2650	2380	3535	3740	3110
Частота вращения, мин ⁻¹	1420	1400	1370	1415	1235
Уровень звукового давления на расст. 3 м, dB(A)	54	53	51	51	47
Макс. темп. перемещаемого воздуха, °C	-25 +50	-25 +70	-40 +80	-40 +60	-40 +80
Защита	IP X4	IP X4	IP X4	IP	X4

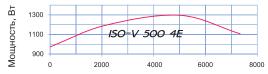


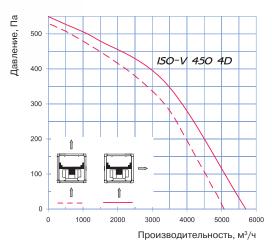


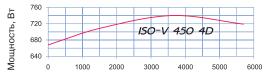


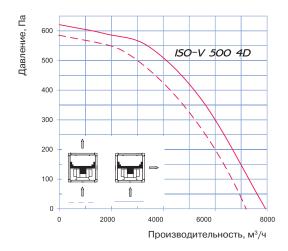


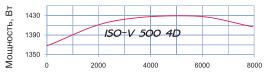


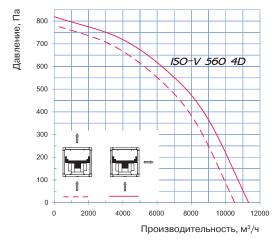


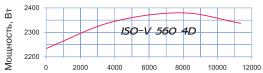

Параметры	Iso-V 450 4E	Iso-V 450 4D	Iso-V 500 4E	Iso-V 500 4D
Напряжение, В / 50/60 Гц	1~ 230	3~ 400	1~ 230	3~ 400
Потребляемая мощность, Вт	680	740	1300	1430
Ток, А	3,00	1,50	5,70	3,00
Макс. расход воздуха, м ³ /ч при потоке воздуха: - перпендикулярно	5630	5700	7330	7940
- прямо	4930	5080	6680	7200
Частота вращения, мин ⁻¹	1250	1350	1320	1375
Уровень звукового давления на расст. 3 м, dB(A)	53	54	55	58
Макс. темп. перемещаемого воздуха, °C	-40 +70	-40 +80	-20 +50	-40 +80
Защита	IP X4	IP X4	IP X4	IP X4

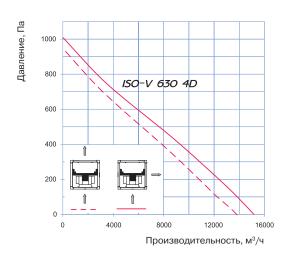


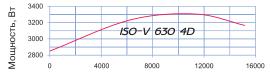


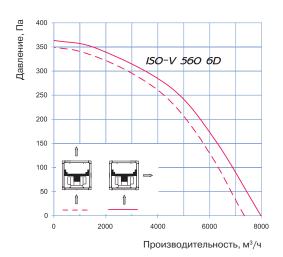


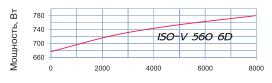


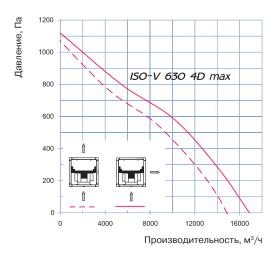


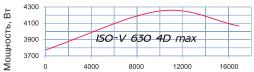


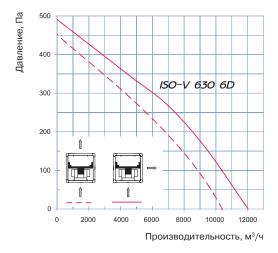


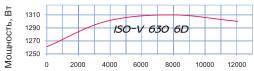

Параметры	Iso-V 560 4D	Iso-V 560 6D	Iso-V 630 4D	Iso-V 630 4D max
Напряжение, В / 50/60 Гц	3~ 400	3~ 400	3~ 400	3~ 400
Потребляемая мощность, Вт	2380	780	3310	4250
Ток, А	5,00	1,70	6,20	7,55
Макс. расход воздуха, м³/ч при потоке воздуха: - перпендикулярно	11340	7970	15170	16870
- прямо	10490	7330	13740	14930
Частота вращения, мин ⁻¹	1365	885	1170	1300
Уровень звукового давления на расст. 3 м, dB(A)	56	49	67	69
Макс. темп. перемещаемого воздуха, °C	-40 +60	-40 +55	-40 +35	-40 +60
Защита	IP X4	IP X4	IP X4	IP X4

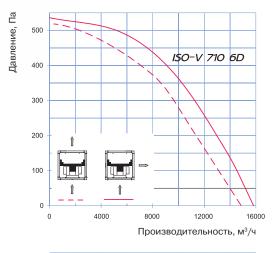


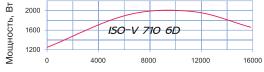




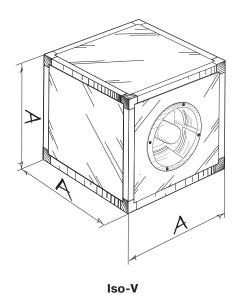


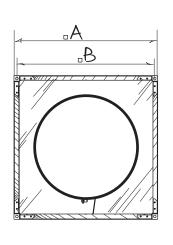


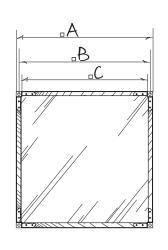


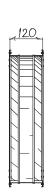


Параметры	Iso-V 630 6D	Iso-V 710 6D
Напряжение, В / 50/60 Гц	3~ 400	3~ 400
Потребляемая мощность, Вт	1310	2000
Ток, А	2,80	3,90
Макс. расход воздуха, м³/ч при потоке воздуха: - перпендикулярно	12030	15830
- прямо	10440	14880
Частота вращения, мин ⁻¹	880	890
Уровень звукового давления на расст. 3 м, dB(A)	55	59
Макс. темп. перемещаемого воздуха, °C	-40 +60	-20 +40
Защита	IP X4	IP X4






Габаритные размеры вентиляторов и опционных принадлежностей


Тип	Размеры, мм	Magaz wa	Опции к веі	нтиляторам		Разме	ры, мм		
ТИП	Α	Масса, кг	ARV	AKV	А	В	С	ØD	
Iso-V 355 4E	500	25	ARV 355	AKV 500	490	470	445	355	
Iso-V 355 4D	500	25	ARV 355	AKV 500	490	470	445	300	
Iso-V 400 4E	670	39	ARV 400		660	640	615	400	
Iso-V 400 4D	670	39			660	640		400	
Iso-V 450 4E	670	43	ARV 450	ADV 450	AKW 670	660	640	615	450
Iso-V 450 4D	670	43		V 450 AKV 670	000	040	013	450	
Iso-V 500 4E	670	52	ADV 500		660	640	615	E00	
Iso-V 500 4D	670	56	ARV 500		660	640	615	500	
Iso-V 560 4D	800	99	ADV 560		700	770	745	EGO	
Iso-V 560 6D	800	86	ARV 560		790	770	745	560	
Iso-V 630 4D	800	102		AKV 800					
Iso-V 630 4D max	800	100	ARV 630		790	770	745	630	
Iso-V 630 6D	800	98							
Iso-V 710 6D	1000	136	ARV 710	AKV 1000	990	970	945	710	

ARV

AKV

Шумоизолированный центробежный вентилятор

Iso-ZS

Производительность — до 3930 м³/ч

Применение

- Приточно-вытяжные системы вентиляции различных помещений с высокими требованиями к уровню шума.
- Для воздуховодов диаметром 250 или 315 мм.

Конструкция

- □ Корпус изготавливается из оцинкованной стали с тепло- и звукоизолируется негорючим пенополиуританом толщиной 30 мм.
- Присоединительные патрубки оснащены резиновыми уплотнителями.
- Наружная клеммная коробка для подключения питания.
- □ Предусмотрены крепёжные петли для подвеса или транспортировки.
- □ Доступны модели вентилятора с двумя всасывающими патрубками Ø 250 мм (Iso-ZS 315/2x250) для организации вытяжки из нескольких помещений одновременно.

Двигатель

- 4-х или 6-ти полюсный асинхронный двигатель с внешним ротором и центробежным рабочим колесом двухстороннего всасывания с вперёд загнутыми лопатками.
- □ Двигатель установлен на специальных резиновых опорах для уменьшения виброшума.
- Оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- Турбина динамически сбалансирована.

Регулировка скорости

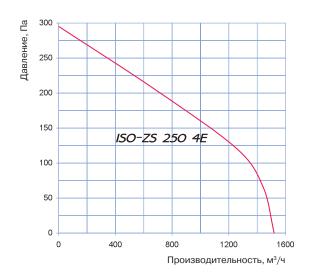
 Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

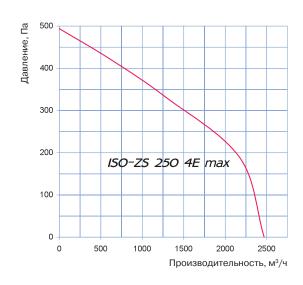
Монтаж

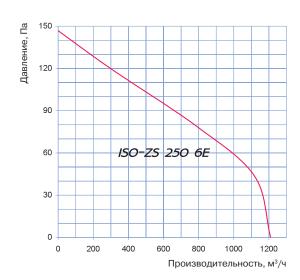
- □ Монтируется с круглыми воздуховодами.
- Вентилятор устанавливаются в любом положении в соответствии с направлением движения воздуха и закрепляется при помощи опор, подвесок или кронштейнов.
- □ Может подвешиваться к потолку при помощи монтажных петель.
- □ Гибкие воздуховоды соответствующего диаметра закрепляются на патрубках вентилятора при помощи хомутов.

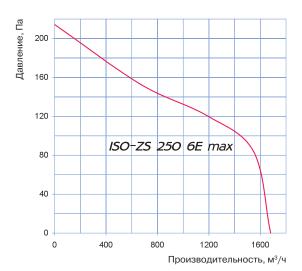
Модификации и опции ...

- □ **G** регулятор скорости и температуры с выносным датчиком температуры (длина кабеля 4 метра). Вентилятор оснащается шнуром питания со штекером или евровилкой (**G1**).
- □ **GI** регулятор скорости и температуры со встроенным датчиком температуры в канал вентилятора. Вентилятор оснащается шнуром питания со штекером или евровилкой (**GI1**).

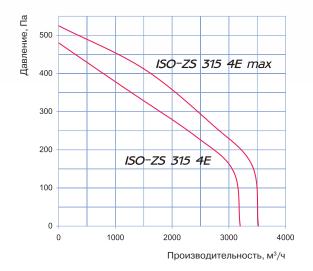


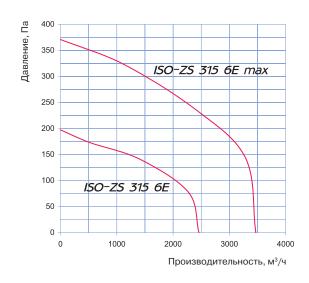

Опции G и GI позволяют автоматически изменять скорость вращения крыльчатки вентилятора в зависимости от температуры в помещении. Оптимальное решение для вентиляции помещений, где необходим контроль температуры воздуха (теплицы и т.д).

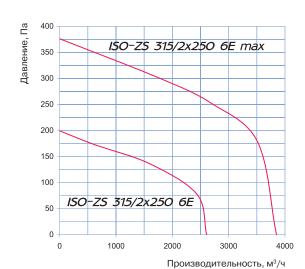

- W вентилятор оснащается шнуром питания со штекером или евровилкой (W1).
- max двигатель повышенной мощности.



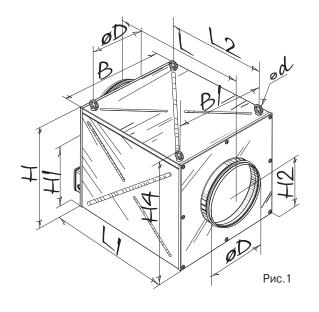
Параметры	Iso-ZS 250 4E	Iso-ZS 250 4E max	Iso-ZS 250 6E	Iso-ZS 250 6E max
Напряжение, В / 50 Гц	1~ 230	1~ 230	1~ 230	1~ 230
Потребляемая мощность, Вт	243	617	120	311
Ток, А	1,06	2,69	0,55	1,36
Максимальный расход воздуха, м ³ /ч	1520	2470	1210	1680
Частота вращения, мин ⁻¹	1320	1465	860	940
Уровень звукового давления на расст. 3 м, dB(A)	44	46	40	41
Макс. темп. перемещаемого воздуха, °C	-20+50	-20+50	-20+50	-20+50
Защита	IP 42	IP 42	IP 42	IP 42

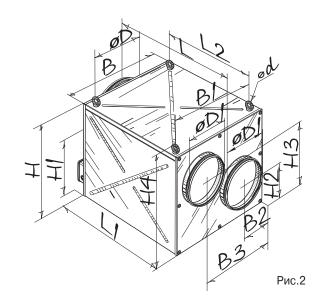






Параметры	Iso- ZS 315 4E	Iso-ZS 315 4E max	Iso-ZS 315/2x250 4E	Iso-ZS 315/2x250 4E max
Напряжение, В / 50 Гц	1~ 230	1~ 230	1~ 230	1~ 230
Потребляемая мощность, Вт	723	931	764	1066
Ток, А	3,15	4,18	3,36	4,78
Максимальный расход воздуха, м ³ /ч	3200	3520	3420	3930
Частота вращения, мин ⁻¹	1350	1430	1390	1455
Уровень звукового давления на расст. 3 м, dB(A)	45	47	45	47
Макс. темп. перемещаемого воздуха, °C	-20+50	-20+50	-20+50	-20+50
Защита	IP 42	IP 42	IP 42	IP 42





Параметры	Iso-ZS 315 6E	Iso-ZS 315 6E max	Iso-ZS 315/2x250 6E	Iso-ZS 315/2x250 6E max
Напряжение, В / 50 Гц	1~ 230	1~ 230	1~ 230	1~ 230
Потребляемая мощность, Вт	402	800	427	953
Ток, А	2,04	4,59	2,13	5,06
Максимальный расход воздуха, м ³ /ч	2460	3470	2610	3850
Частота вращения, мин ⁻¹	920	960	955	970
Уровень звукового давления на расст. 3 м, dB(A)	42	43	42	43
Макс. темп. перемещаемого воздуха, °C	-20+50	-20+50	-20+50	-20+50
Защита	IP 42	IP 42	IP 42	IP 42

Тип					Pa	змеры,	ММ					Macca,	Рисунок
I VIII	ØD	Ød	В	B1	Н	H1	H2	H4	L	L1	L2	КГ	Nº
Iso-ZS 250 4E	248	20	453	400	433	298	216	470	568	470	400	30	1
Iso-ZS 250 6E	248	20	453	400	433	298	216	470	568	470	400	30	1
Iso-ZS 250 4E max	248	20	503	450	483	340	241	520	638	540	470	31,3	1
Iso-ZS 250 6E max	248	20	503	450	483	340	241	520	638	540	470	31,3	1
Iso-ZS 315 4E	313	20	600	550	500	340	251	537	680	580	510	33	1
Iso-ZS 315 6E	313	20	600	550	500	340	251	537	680	580	510	31	1
Iso-ZS 315 4E max	313	20	650	610	530	367	266	567	735	635	570	38	1
Iso-ZS 315 6E max	313	25	670	620	610	450	306	658	825	725	660	45	1

Tun	Размеры, мм									Масса,	Рисунок						
Тип	ØD	ØD1	Ød	В	B1	B2	В3	Н	H1	H2	Н3	H4	L	L1	L2	КГ	Nº
Iso-ZS 315/2x250 4E	313	248	20	600	550	171	431	500	340	176	326	537	680	580	510	33	2
Iso-ZS 315/2x250 6E	313	248	20	600	550	171	431	500	340	176	326	537	680	580	510	31	2
Iso-ZS 315/2x250 4E max	313	248	20	650	610	188	465	530	367	186	346	567	735	635	570	38	2
Iso-ZS 315/2x250 6E max	313	248	25	670	620	216	457	610	450	186	427	658	825	725	660	45	2

Центробежный вентилятор *Helix*

Производительность — до $2000 \, \text{м}^3 / \text{ч}$

П	ри	M	ен	ен	ие

- □ Приточно-вытяжные системы вентиляции различных помещений.
- □ Может использоваться как комплектующий элемент к установкам вентиляции или кондиционирования воздуха.
- □ Соединяется с круглым и прямоугольным воздуховодами.

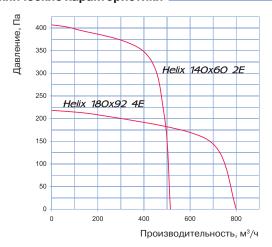
Конструкция

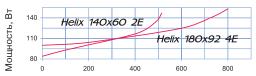
- □ Компактный спиральный корпус изготавливается из стали и окрашивается специальной полимерной краской.
- Вентилятор оборудован всасывающим фланцем круглого сечения и выхлопным фланцем прямоугольного сечения для подключения к соответсвующим воздуховодам.
- Наружная клеммная коробка для подключения питания.
- Модели **Helix 225x102 4E** и **Helix 250x140 4E** оснащены кронштейнами и монтажной площадкой для удобства закрепления на ровной поверхности.

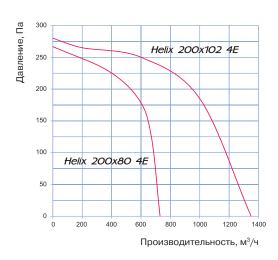
Двигатель

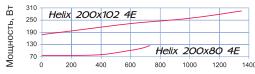
- □ 2-х или 4-х полюсный однофазный асинхронный двигатель с внешним ротором и центробежным рабочим колесом с вперёд загнутыми лопатками.
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

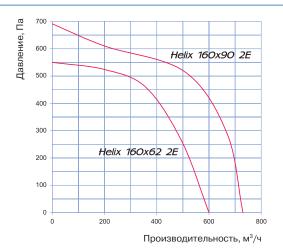
Регулировка скорости

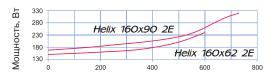

Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

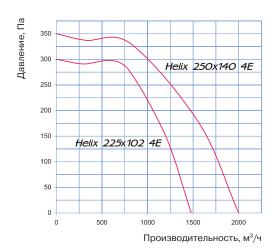

Монтаж

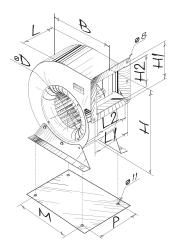

- Может устанавливаться в вентиляционных камерах и установках для кондиционирования воздуха.
- □ При независимой эксплуатации может подключаться к воздуховодам двумя патрубками одновременно (всасывающий и выхлопной) или только одним выхлопным.
- □ Вентилятор устанавливается в любом положении в соответствии с направлением движения воздуха.
- Питание осуществляется через наружную клеммную коробку с гермовводом.
- Модели **Helix 225х102 4E** и **Helix 250х140 4E** крепятся при помощи кронштейнов, поставляемых в комплекте.


Параметры	Helix 140x60 2E	Helix 160x62 2E	Helix 160x90 2E	Helix 180x92 4E	Helix 200x80 4E	Helix 200x102 4E	Helix 225x102 4E	Helix 250x140 4E
Напряжение, В / 50 Гц	230	230	230	230	230	230	230	230
Потребляемая мощность, Вт	148	240	320	160	125	280	395	570
Ток, А	0,64	1,05	1,48	0,7	0,55	1,25	1,98	2,48
Максимальный расход воздуха, м ³ /ч	515	600	730	800	730	1350	1480	2000
Частота вращения, мин ⁻¹	2820	2100	2745	1465	1430	1475	1330	1310
Уровень звукового давления на расст. 3 м, dB(A)	68	68	70	62	63	65	69	60
Макс. темп. перемещаемого воздуха, °C	-25 +45	-25 +50	-25 +45	-25 +45	-25 +45	-25 +40	-40 +70	-40 +70
Защита	IP X4	IP X4	IP X4					









ВТ	510 -									
ئم.	410 -	1	Helix	250	x140	4E				
50										
흌	310 -					ł	lelix	<i>225</i> ×	102	4E
Mo	210)	50	00	10	00	15	00	20	00

Тип	Размеры, мм										
IVIII	ØD	В	Н	H1	H2	L	L1	L2	Р	М	КГ
Helix 140x60 2E	140	243	287	125	93	85	107	75	-	-	3,2
Helix 160x62 2E	160	277	324	136	106	89	112	82	-	-	4,2
Helix 160x90 2E	160	277	324	136	106	136	158	127	-	-	5,1
Helix 180x92 4E	180	311	360	150	120	145	166	137	-	-	6,5
Helix 200x80 4E	200	335	398	165	134	121	140	113	-	-	6,8
Helix 200x102 4E	200	335	398	165	134	157	175	148	-	-	7,3
Helix 225x102 4E	225	365	441	210	171	145	170	137	178	250	11,2
Helix 250x140 4E	250	410	485	230	191	205	230	197	238	270	15,5

Осевой канальный вентилятор *Tubo-M / Tubo-MZ*Производительность — до 1700 м³/ч

Применение

- Приточно-вытяжные системы вентиляции различных помещений.
- Для монтажа в системах с низким статическим давлением, но требующих высокой производительности.
- □ Для воздуховодов типоразмером от 150 до 315 мм.

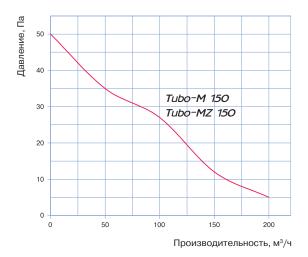
Конструкция

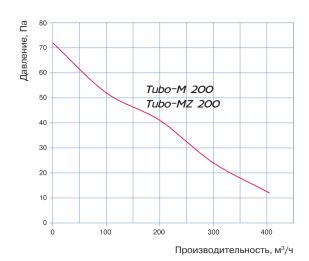
- □ Компактный корпус изготавливается из стали и окрашивается специальной полимерной краской (серия **Tubo-M**) или из оцинкованной стали (серия **Tubo-MZ**).
- Крыльчатка выполнена из алюминия.
- Вентилятор оборудован шнуром питания с выносной клеммной коробкой для подключения питания.

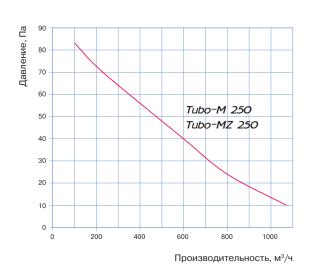
Двигатель

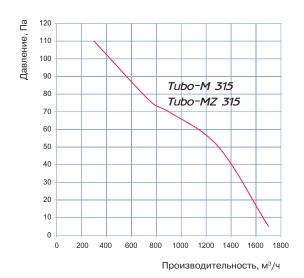
- □ Однофазный асинхронный двигатель с внешним ротором и крыльчаткой осевого типа.
- □ Двигатель оснащён шариковыми подшипниками для большего срока эксплуатации.
- □ Снабжен встроенной тепловой защитой с автоматическим перезапуском.

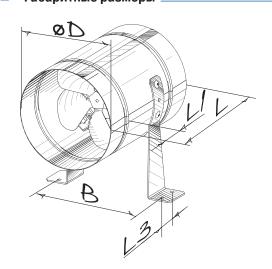
Регулировка скорости


Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).


Монтаж


- □ Вентилятор устанавливается в канал или непосредственно в стену, в любом положении в соответствии с направлением движения воздуха.
- Питание осуществляется через наружную клеммную коробку с гермовводом.
- □ Крепление к стене или потолку осуществляется при помощи монтажных кронштейнов поставляемых в комплекте.
- ☐ Для соединения вентиляторов Tubo-M \ Tubo-MZ типоразмером от 150 до 250 с воздуховодами предусмотрены редукторы из стали с полимерным покрытием или из оцинкованной стали. Редукторы в комплект поставки не входят и приобретаются отдельно.
- □ **Tubo-M 315** и **Tubo-MZ 315** с каналами 315 мм соединяются напрямую.


Параметры	Tubo-M 150 Tubo-MZ 150	Tubo-M 200 Tubo-MZ 200	Tubo-M 250 Tubo-MZ 250	Tubo-M 315 Tubo-MZ 315
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	36	43	68	110
Ток, А	0,26	0,28	0,48	0,75
Максимальный расход воздуха, м ³ /ч	200	405	1070	1700
Частота вращения, мин ⁻¹	1300	1300	1300	1300
Уровень звукового давления на расст. 3 м, dB(A)	33	32	48	54
Макс. темп. перемещаемого воздуха, °C	40	40	40	40
Защита	IP X4	IP X4	IP X4	IP X4



Тип		Размеры, мм							
I MII	ØD	В	L	L1	L3	КГ			
Tubo-M / Tubo-MZ 150	162	183	220	40	30	2,08			
Tubo-M / Tubo-MZ 200	208	228	220	40	30	2,54			
Tubo-M / Tubo-MZ 250	262	283	270	55	30	3,97			
Tubo-M / Tubo-MZ 315	315	337	278	55	40	4,84			

Осевой канальный вентилятор Axis-F

Производительность — до 11900 м³/ч

- □ Приточно-вытяжные системы вентиляции различных помещений.
- Идеальное решение для перемещения больших объемов воздуха при невысоких аэродинамических сопротивлениях вентиляционной системы.

Конструкция

- □ Компактный корпус и крыльчатка изготавливаются из стали и окрашиваются специальной полимерной краской.
- □ Корпус оснащён соединительными фланцами для удобства установки вентилятора в вентиляционный канал.
- Вентилятор оборудован внешней клеммной коробкой для подключения питания.

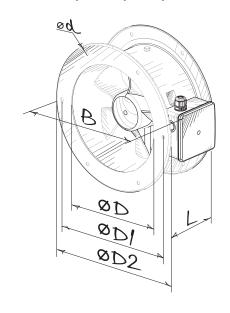
Двигатель .

- 2-х или 4-х полюсный асинхронный двигатель с внешним ротором и крыльчаткой осевого типа.
- □ Исполнение двигателя однофазное (E) или трёхфазное (D).
- □ Двигатель оснащён шариковыми подшипниками для большего срока эксплуатации.
- □ Снабжен встроенной тепловой защитой с автоматическим перезапуском.

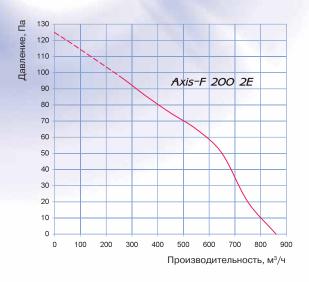
Регулировка скорости _

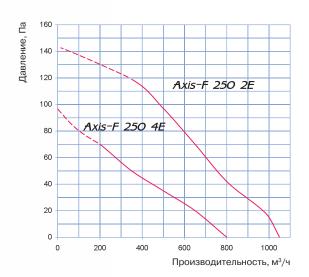
□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

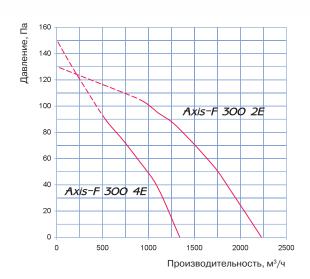
Монтаж

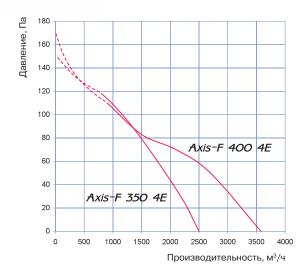

- Вентилятор устанавливается в канал в любом положении, в соответствии с направлением движения воздуха при помощи соединительных фланцев на корпусе вентилятора.
- □ Питание осуществляется через наружную клеммную коробку.

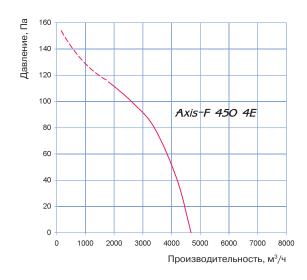
Параметры	Axis-F 200 2E	Axis-F 250 2E	Axis-F 250 4E	Axis-F 300 2E	Axis-F 300 4E	Axis-F 350 4E
Напряжение, В / 50 Гц	230	230	230	230	230	230
Потребляемая мощность, Вт	55	80	50	145	75	140
Ток, А	0,26	0,4	0,22	0,66	0,35	0,65
Максимальный расход воздуха, м³/ч	860	1050	800	2230	1340	2500
Частота вращения, мин ⁻¹	2300	2400	1380	2300	1350	1380
Уровень звукового давления на расст. 3 м, dB(A)	50	60	55	60	58	62
Макс. темп. перемещаемого воздуха, °С	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP X4					

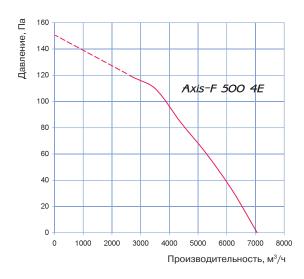


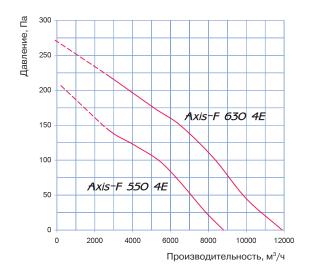

Параметры	Axis-F 400 4E	Axis-F 450 4E	Axis-F 500 4E	Axis-F 550 4E	Axis-F 630 4E
Напряжение, В / 50 Гц	230	230	230	230	230
Потребляемая мощность, Вт	180	250	420	550	750
Ток, А	0,82	1,2	1,95	2,55	3,5
Максимальный расход воздуха, м ³ /ч	3580	4680	7060	8800	11900
Частота вращения, мин ⁻¹	1380	1350	1300	1300	1360
Уровень звукового давления на расст. 3 м, dB(A)	63	64	69	70	75
Макс. темп. перемещаемого воздуха, °С	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP X4				

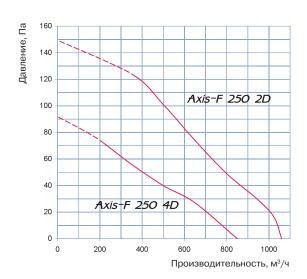

Параметры	Axis-F 250 2D	Axis-F 250 4D	Axis-F 300 2D	Axis-F 300 4D	Axis-F 350 4D	Axis-F 400 4D	Axis-F 450 4D
Напряжение, В / 50 Гц	400	400	400	400	400	400	400
Потребляемая мощность, Вт	80	60	145	75	140	180	250
Ток, А	0,22	0,17	0,25	0,22	0,38	0,47	0,6
Максимальный расход воздуха, м ³ /ч	1060	850	2310	1310	2520	3740	5280
Частота вращения, мин ⁻¹	2600	1400	2350	1380	1380	1380	1360
Уровень звукового давления на расст. 3 м, dB(A)	60	55	60	58	62	64	65
Макс. темп. перемещаемого воздуха, °C	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP X4						

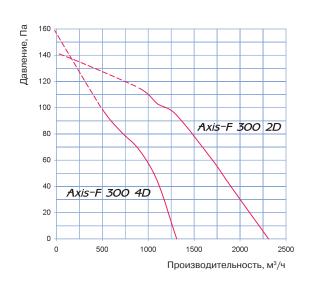


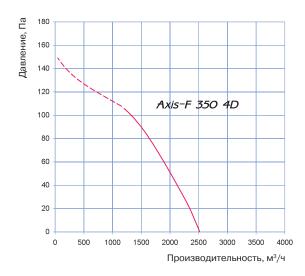

Tue		Macca,					
Тип	ØD	ØD1	ØD2	Ød	В	L	КГ
Axis-F 200 2E	205	250	280	7	290	120	1,95
Axis-F 250 2E	260	295	320	7	340	150	3,84
Axis-F 250 4E	260	295	320	7	340	150	3,96
Axis-F 300 2E	310	380	397	9	420	160	5,31
Axis-F 300 4E	310	380	397	9	420	160	5,59
Axis-F 350 4E	362	442	460	9	480	160	6,37
Axis-F 400 4E	412	504	528	9	550	170	8,39
Axis-F 450 4E	462	578	607	11	630	200	10,65
Axis-F 500 4E	515	600	650	11	635	220	12,80
Axis-F 550 4E	565	650	700	13	685	230	17,30
Axis-F 630 4E	645	740	790	13	780	230	20,13
Axis-F 250 2D	260	295	320	7	340	150	3,84
Axis-F 250 4D	260	295	320	7	340	150	3,96
Axis-F 300 2D	310	380	397	9	420	160	5,31
Axis-F 300 4D	310	380	397	9	420	160	5,59
Axis-F 350 4D	362	442	460	9	480	160	6,37
Axis-F 400 4D	412	504	528	9	550	170	8,39
Axis-F 450 4D	462	578	607	11	630	200	10,65

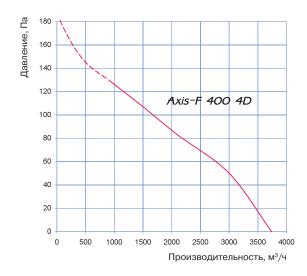


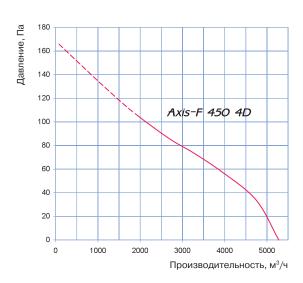












Осевой настенный вентилятор Axis-Q

Производительность — до $11900 \,\mathrm{M}^3/4$

	ľ	1	p	V	11	M	е	Н	е	Н	V	I	е

- □ Вытяжные и приточно-вытяжные системы вентиляции различных помещений.
- Идеальное решение для перемещения больших объемов воздуха при невысоких аэродинамических сопротивлениях вентиляционной системы.
- Может использоваться в холодильной технике для охлаждения компрессорно-конденсаторных блоков.
- Для прямого выброса отработанного воздуха.
- □ Вентиляция подпора в системах противопожарной вентиляции.

Конструкция

- □ Корпус и крыльчатка изготавливается из стали и окрашивается специальной полимерной краской.
- □ Корпус оснащен квадратной монтажной пластиной для удобства установки вентилятора на стену.
- Вентилятор оборудован клеммной коробкой для подключения питания.

Двигатель

- □ 2-х или 4-х полюсные асинхронные двигатели с внешним ротором и крыльчаткой осевого типа.
- Исполнение двигателя однофазное (E) или трёхфазное (D).
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.

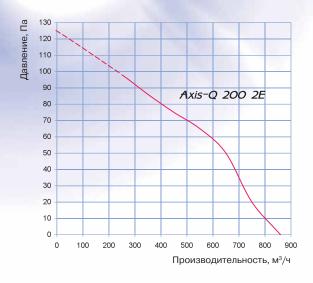
Регулировка скорости

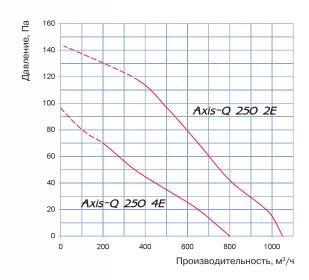
□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

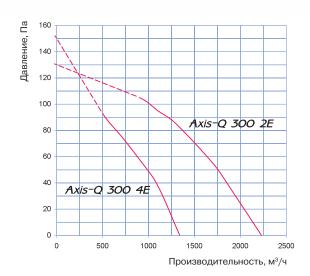
Монтаж

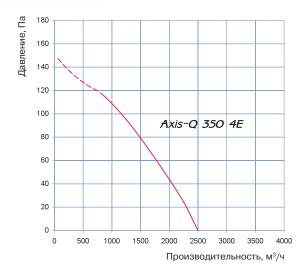
- Вентилятор устанавливается на поверхность стены при помощи квадратной присоединительной пластины.
- Установка в любом положении, в соответствии с направлением движения воздуха.
- □ Питание осуществляется через наружную клеммную коробку.

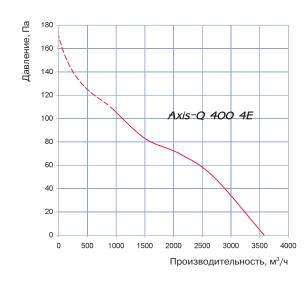
Параметры	Axis-Q 200 2E	Axis-Q 250 2E	Axis-Q 250 4E	Axis-Q 300 2E	Axis-Q 300 4E	Axis-Q 350 4E
Напряжение, В / 50 Гц	230	230	230	230	230	230
Потребляемая мощность, Вт	55	80	50	145	75	140
Ток, А	0,26	0,4	0,22	0,66	0,35	0,65
Максимальный расход воздуха, м ³ /ч	860	1050	800	2230	1340	2500
Частота вращения, мин ⁻¹	2300	2400	1380	2300	1350	1380
Уровень звукового давления на расст. 3 м, dB(A)	50	60	55	60	58	62
Макс. темп. перемещаемого воздуха, °C	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP 24					

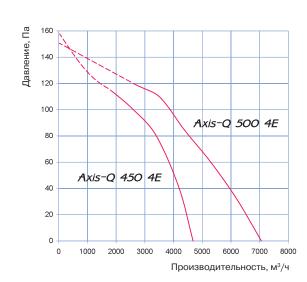

Параметры	Axis-Q 400 4E	Axis-Q 450 4E	Axis-Q 500 4E	Axis-Q 550 4E	Axis-Q 630 4E	Axis-Q 250 2D
Напряжение, В / 50 Гц	230	230	230	230	230	400
Потребляемая мощность, Вт	180	250	420	550	750	80
Ток, А	0,82	1,2	1,95	2,55	3,5	0,22
Максимальный расход воздуха, м ³ /ч	3580	4680	7060	8800	11900	1060
Частота вращения, мин ⁻¹	1380	1350	1300	1300	1360	2600
Уровень звукового давления на расст. 3 м, dB(A)	63	64	69	70	75	60
Макс. темп. перемещаемого воздуха, °C	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP 24					

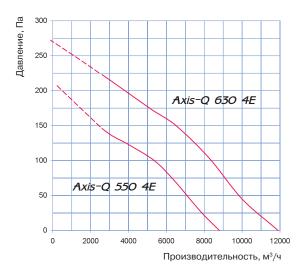

Параметры	Axis-Q 250 4D	Axis-Q 300 2D	Axis-Q 300 4D	Axis-Q 350 4D	Axis-Q 400 4D	Axis-Q 450 4D
Напряжение, В / 50 Гц	400	400	400	400	400	400
Потребляемая мощность, Вт	60	145	75	140	180	250
Ток, А	0,17	0,25	0,22	0,38	0,47	0,6
Максимальный расход воздуха, м ³ /ч	850	2310	1310	2520	3740	5280
Частота вращения, мин ⁻¹	1400	2350	1380	1380	1380	1360
Уровень звукового давления на расст. 3 м, dB(A)	55	60	58	62	64	65
Макс. темп. перемещаемого воздуха, °C	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP 24					

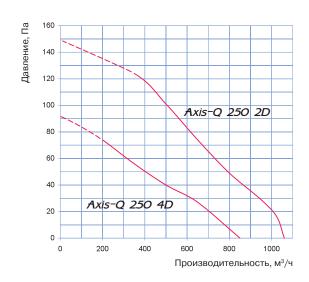

Габаритные размеры ____

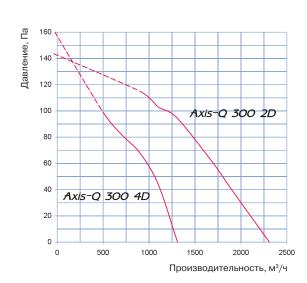


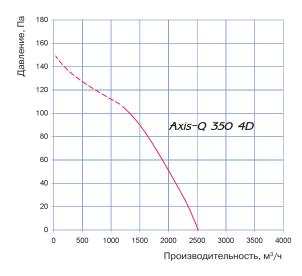

Тип		Масса, кг				
IVIII	ØD	Ød	В	B1	L	iviacca, ki
Axis-Q 200 2E	210	7	312	260	145	3,95
Axis-Q 250 2E	260	7	370	320	155	4,17
Axis-Q 250 4E	260	7	370	320	155	4,06
Axis-Q 300 2E	326	9	430	380	195	5,27
Axis-Q 300 4E	326	9	430	380	195	5,11
Axis-Q 350 4E	388	9	485	435	200	7,05
Axis-Q 400 4E	417	9	540	490	240	8,80
Axis-Q 450 4E	465	11	576	535	250	10,50
Axis-Q 500 4E	520	11	655	615	260	14,15
Axis-Q 550 4E	570	11	725	675	280	16,50
Axis-Q 630 4E	650	11	800	710	295	22,55
Axis-Q 250 2D	260	7	370	320	155	4,17
Axis-Q 250 4D	260	7	370	320	155	4,06
Axis-Q 300 2D	326	9	430	380	155	5,27
Axis-Q 300 4D	326	9	430	380	155	5,11
Axis-Q 350 4D	388	9	485	435	200	7,05
Axis-Q 400 4D	417	9	540	490	240	8,80
Axis-Q 450 4D	465	11	576	535	250	10,50

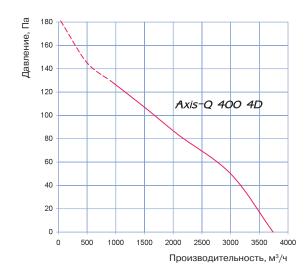


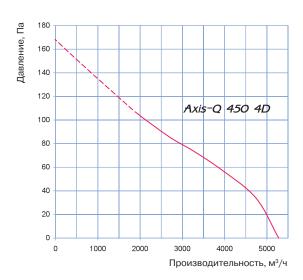












Осевой настенный вентилятор Axis-QR

Производительность — до $11900 \, \text{м}^3/\text{ч}$

	Π	lp	И	M	e	н	e	н	И	е

- □ Вытяжные и приточно-вытяжные системы вентиляции различных помещений.
- Идеальное решение для перемещения больших объемов воздуха при невысоких аэродинамических сопротивлениях вентиляционной системы.
- □ Может использоваться в холодильной технике для охлаждения компрессорных и конденсаторных блоков.
- □ Для прямого выброса отработанного воздуха.
- □ Вентиляция подпора в системах противопожарной вентиляции.

Конструкция

- □ Корпус и крыльчатка изготавливаются из стали и окрашиваются специальной полимерной краской.
- □ Корпус оснащен круглой монтажной пластиной для удобства установки вентилятора на стену.
- Вентилятор оборудован клеммной коробкой для подключения питания.

Двигатель

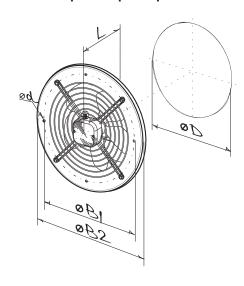
- □ 2-х или 4-х полюсный асинхронный двигатель с внешним ротором и крыльчаткой осевого типа.
- □ Исполнение двигателя однофазное (E) или трёхфазное (D).
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Снабжен встроенной тепловой защитой с автоматическим перезапуском.

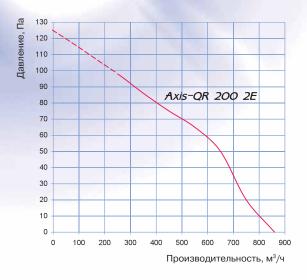
Регулировка скорости .

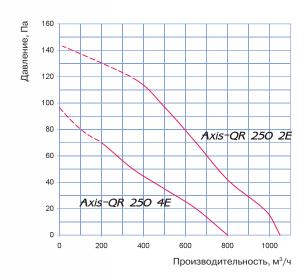
Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

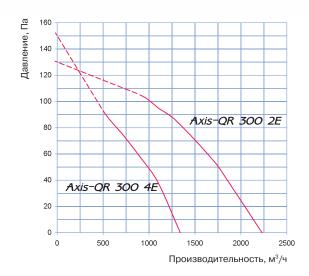
Монтаж

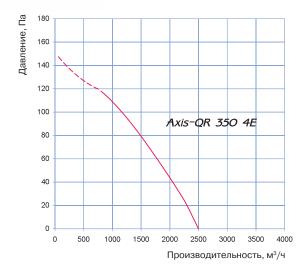
- Вентилятор устанавливается на поверхность стены при помощи круглой присоединительной пластины.
- Установка в любом положении, в соответствии с направлением движения воздуха.
- □ Питание осуществляется через наружную клеммную коробку.

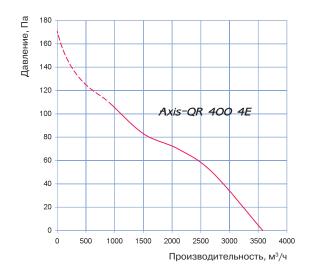

Параметры	Axis-QR 200 2E	Axis-QR 250 2E	Axis-QR 250 4E	Axis-QR 300 2E	Axis-QR 300 4E	Axis-QR 350 4E
Напряжение, В / 50 Гц	230	230	230	230	230	230
Потребляемая мощность, Вт	55	80	50	145	75	140
Ток, А	0,26	0,4	0,22	0,66	0,35	0,65
Максимальный расход воздуха, м ³ /ч	860	1050	800	2230	1340	2500
Частота вращения, мин ⁻¹	2300	2400	1380	2300	1350	1380
Уровень звукового давления на расст. 3 м, dB(A)	50	60	55	60	58	62
Макс. темп. перемещаемого воздуха, °С	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP 24					

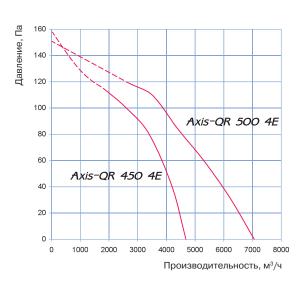

Параметры	Axis-QR 400 4E	Axis-QR 450 4E	Axis-QR 500 4E	Axis-QR 550 4E	Axis-QR 630 4E	Axis-QR 250 2D
Напряжение, В / 50 Гц	230	230	230	230	230	400
Потребляемая мощность, Вт	180	250	420	550	750	80
Ток, А	0,82	1,2	1,95	2,55	3,5	0,22
Максимальный расход воздуха, м ³ /ч	3580	4680	7060	8800	11900	1060
Частота вращения, мин ⁻¹	1380	1350	1300	1300	1360	2600
Уровень звукового давления на расст. 3 м, dB(A)	63	64	69	70	75	60
Макс. темп. перемещаемого воздуха, °C	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP 24					

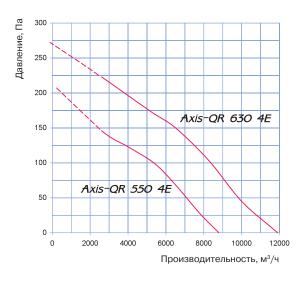

Параметры	Axis-QR 250 4D	Axis-QR 300 2D	Axis-QR 300 4D	Axis-QR 350 4D	Axis-QR 400 4D	Axis-QR 450 4D
Напряжение, В / 50 Гц	400	400	400	400	400	400
Потребляемая мощность, Вт	60	145	75	140	180	250
Ток, А	0,17	0,25	0,22	0,38	0,47	0,6
Максимальный расход воздуха, м ³ /ч	850	2310	1310	2520	3740	5280
Частота вращения, мин ⁻¹	1400	2350	1380	1380	1380	1360
Уровень звукового давления на расст. 3 м, dB(A)	55	60	58	62	64	65
Макс. темп. перемещаемого воздуха, °C	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP 24					

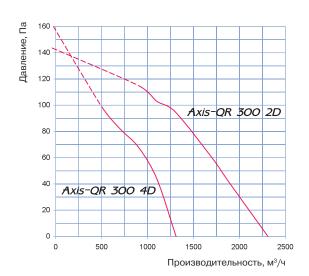

Габаритные размеры ____

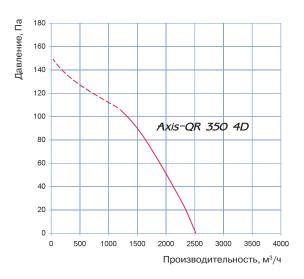


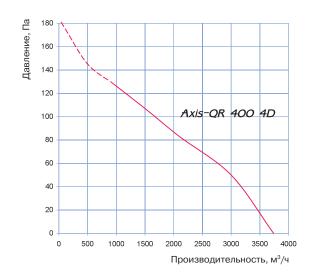

Тип		Р	азмеры, м	М		Macca,	
IMII	ØD	Ød	ØB1	øB2	L	КГ	
Axis-QR 200 2E	210	7	250	280	145	2,45	
Axis-QR 250 2E	260	7	295	320	155	3,38	
Axis-QR 250 4E	260	7	295	320	155	3,38	
Axis-QR 300 2E	326	9	380	397	195	4,44	
Axis-QR 300 4E	326	9	380	397	195	4,66	
Axis-QR 350 4E	388	9	442	460	200	6,33	
Axis-QR 400 4E	417	9	504	528	240	8,27	
Axis-QR 450 4E	465	11	578	607	250	9,77	
Axis-QR 500 4E	520	11	590	655	260	12,20	
Axis-QR 550 4E	570	11	645	710	280	14,95	
Axis-QR 630 4E	650	11	760	800	295	20,83	
Axis-QR 250 2D	260	7	295	320	155	3,38	
Axis-QR 250 4D	260	7	295	320	155	3,38	
Axis-QR 300 2D	326	9	380	397	155	4,44	
Axis-QR 300 4D	326	9	380	397	155	4,66	
Axis-QR 350 4D	388	9	442	460	200	6,33	
Axis-QR 400 4D	417	9	504	528	240	8,27	
Axis-QR 450 4D	465	11	578	607	250	9,77	

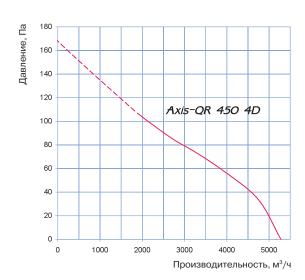












Осевой настенный вентилятор Axis-QA

Производительность — до $1700 \,\mathrm{M}^3/\mathrm{4}$

Применение

- Приточно-вытяжные системы вентиляции различных помещений.
- Для монтажа в системах с низким статическим давлением, но требующих высокой производительности.
- □ Для прямого выброса отработанного воздуха.

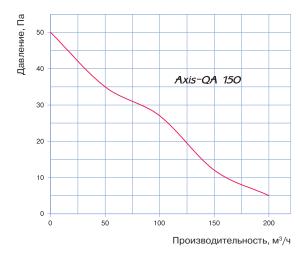
Конструкция

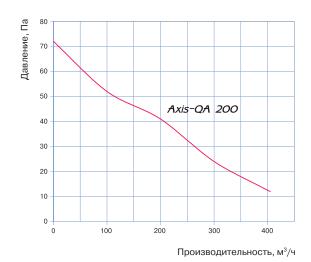
- □ Компактный корпус изготавливается из стали и окрашивается специальной полимерной краской.
- □ Крыльчатка выполнена из алюминия.
- □ Корпус оснащён квадратной монтажной пластиной и круглым фланцем для удобства установки вентилятора на стену.
- Вентиляторы оборудованы шнуром питания с выносной клеммной коробкой для подключения питания.

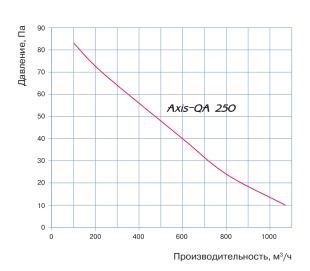
Двигатель .

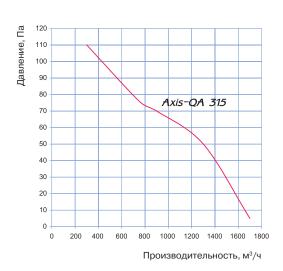
- □ Применяются однофазные асинхронные двигатели с внешним ротором и крыльчаткой осевого типа.
- □ Двигатели оснащёны шариковыми подшипниками для большего срока эксплуатации.
- Снабжены встроенной тепловой защитой с автоматическим перезапуском.

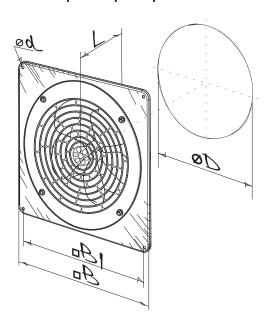
Регулировка скорости :


□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).


Монтаж


- Вентиляторы устанавливаются на поверхность стены при помощи квадратной присоединительной пластины.
- Питание осуществляется через наружную клеммную коробку с гермовводом.


Параметры	Axis-QA 150	Axis-QA 200	Axis-QA 250	Axis-QA 315
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	36	43	68	110
Ток, А	0,26	0,28	0,48	0,75
Максимальный расход воздуха, м ³ /ч	200	405	1070	1700
Частота вращения, мин ⁻¹	1300	1300	1300	1300
Уровень звукового давления на расст. 3 м, dB(A)	33	32	48	54
Макс. темп. перемещаемого воздуха, °С	40	40	40	40
Защита	IP 24	IP 24	IP 24	IP 24



Габаритные размеры

Тип		Размеры, мм							
I MII	ØD	Ød	В	B1	L	КГ			
Axis-QA 150	162	7	250	210	120	2,10			
Axis-QA 200	208	7	312	260	120	2,82			
Axis-QA 250	262	7	370	320	140	4,88			
Axis-QA 315	312	9	430	380	170	5,46			

Осевой настенный вентилятор Axis-QRA

Производительность — до $1700 \, \text{м}^3/\text{ч}$

	ľ	1	p	V	11	VI	е	Н	е	Н	И	е

- □ Приточно-вытяжные системы вентиляции различных помещений.
- Для монтажа в системах с низким статическим давлением, но требующих высокой производительности.
- □ Для прямого выброса отработанного воздуха.

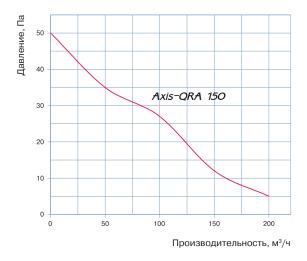
Конструкция

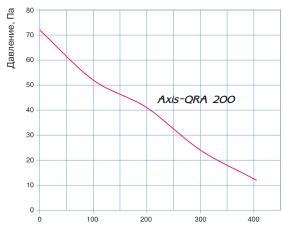
- □ Компактный корпус изготавливается из стали и окрашивается специальной полимерной краской.
- □ Крыльчатка выполнена из алюминия.
- □ Корпус оснащен круглой монтажной пластиной для удобства установки вентилятора на стену.
- Вентилятор оборудован шнуром питания с выносной клеммной коробкой для подключения питания.

Двигатель .

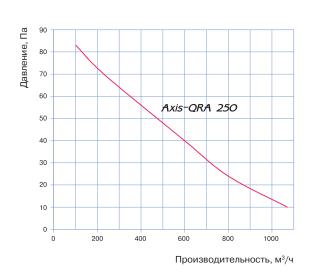
- Однофазный асинхронный двигатель с внешним ротором и крыльчаткой осевого типа.
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.

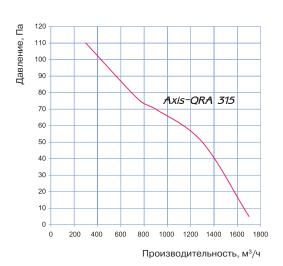
Регулировка скорости

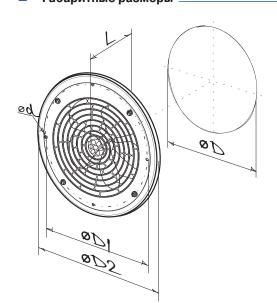

□ Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).


Монтаж

- Вентилятор устанавливается на поверхность стены при помощи круглой присоединительной пластины.
- Питание осуществляется через наружную клеммную коробку с гермовводом.


Параметры	Axis-QRA 150	Axis-QRA 200	Axis-QRA 250	Axis-QRA 315
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	36	43	68	110
Ток, А	0,26	0,28	0,48	0,75
Максимальный расход воздуха, м ³ /ч	200	405	1070	1700
Частота вращения, мин ⁻¹	1300	1300	1300	1300
Уровень звукового давления на расст. 3 м, dB(A)	33	32	48	54
Макс. темп. перемещаемого воздуха, °С	40	40	40	40
Защита	IP 24	IP 24	IP 24	IP 24





Производительность, м³/ч

Габаритные размеры

Тип		Размеры, мм							
I VIII	ØD	ØD1	ØD2	Ød	L	КГ			
Axis-QRA 150	162	190	220	7	120	1,91			
Axis-QRA 200	208	270	300	7	120	2,50			
Axis-QRA 250	262	330	360	7	140	4,10			
Axis-QRA 315	312	390	420	9	170	5,24			

Центробежный крышный вентилятор *Tower-V*

Производительность — до 4700 м³/ч

Применение

- Вытяжные вентиляционные системы различных помещений.
- Монтаж на крыше зданий.
- Для крыш любого типа или вертикальных вентиляционных шахт.

Конструкция

- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской, стойкой к атмосферным воздействиям.
- □ Выброс воздуха осуществляется вертикально.
- Вентилятор оборудован клеммной коробкой для подключения питания
- Вентилятор рассчитан на продолжительную работу без отключения от сети.
- Верхняя крышка оснащена двумя рым-болтами для удобства транспортировки вентилятора на крышу с помощью подъёмных механизмов.
- Для крепления к поверхности крыши предусмотрена присоединительная пластина.

Двигатель .

- 2-х, 4-х или 6-ти полюсный асинхронный двигатель с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- Исполнение двигателя однофазное (E) или трёхфазное (D).
- □ Турбина динамически сбалансирована.
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Тепловая защита от перегрева осуществляется при помощи встроенных термоконтактов с выведенными клеммами для подключения внешних устройств защиты.

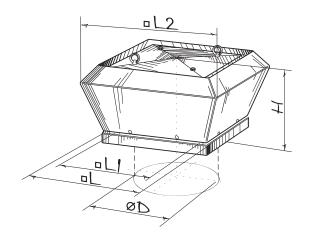
■ Выводы термоконтактов предназначены для подключения в соответствующие цепи контактера, реле перегрузки или определённым клеммам автотрансформаторного или тиристорного регулятора.

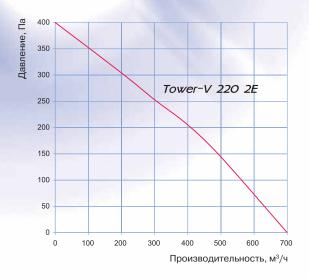
Регулировка скорости

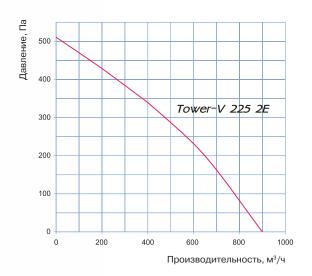
Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

Монтаж

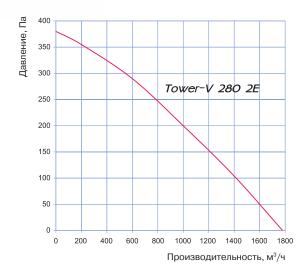
- Вентилятор устанавливается вертикально на кровле, непосредственно над вентиляционным каналом или шахтой.
- Присоединение вентилятора к вентиляционному каналу осуществляется при помощи входного фланца, который крепится непосредственно к основанию вентилятора.
- □ В основании корпуса предусмотрены отверстия для крепежных болтов, которыми вентилятор крепится к неподвижной ровной поверхности или крышному боксу.
- □ Крышный бокс, входной фланец и крепежные болты не входят в комплект поставки и приобретаются отдельно.
- □ Подача питания осуществляется через выносную клеммную коробку.

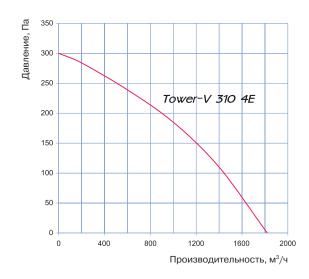

Параметры	Tower-V 220 2E	Tower-V 225 2E	Tower-V 250 2E	Tower-V 280 2E
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	85	135	155	225
Ток, А	0,38	0,6	0,7	1,0
Максимальный расход воздуха, м ³ /ч	700	900	1300	1780
Частота вращения, мин ⁻¹	2700	2650	2600	2700
Уровень звукового давления на расст. 3 м, dB(A)	49	49	65	66
Макс. темп. перемещаемого воздуха, °C	55	55	50	50
Защита	IP X4	IP X4	IP X4	IP X4

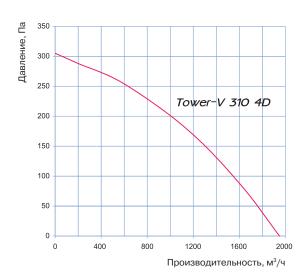

Параметры	Tower-V 310 4E	Tower-V 310 4D	Tower-V 355 4E	Tower-V 355 4D
Напряжение, В / 50 Гц	230	400	230	400
Потребляемая мощность, Вт	120	110	245	170
Ток, А	0,54	0,32	1,12	0,52
Максимальный расход воздуха, м ³ /ч	1820	1950	2800	2350
Частота вращения, мин ⁻¹	1370	1400	1420	1400
Уровень звукового давления на расст. 3 м, dB(A)	45	53	46	53
Макс. темп. перемещаемого воздуха, °C	85	65	50	70
Защита	IP X4	IP X4	IP X4	IP X4

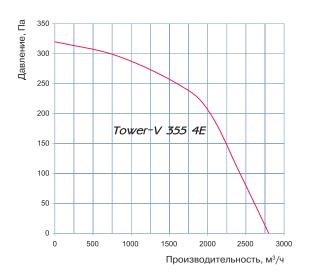

Параметры	Tower-V 400 4E	Tower-V 400 4D	Tower-V 450 4E	Tower-V 450 4D	Tower-V 500 6E
Напряжение, В / 50 Гц	230	400 Y	230	400 Y	230
Потребляемая мощность, Вт	480	385	640	470	385
Ток, А	2,4	0,7	3,1	0,82	1,82
Максимальный расход воздуха, м ³ /ч	3400	3800	3850	4300	4700
Частота вращения, мин ⁻¹	1400	1430	1350	1430	880
Уровень звукового давления на расст. 3 м, dB(A)	52	52	53	53	47
Макс. темп. перемещаемого воздуха, °C	80	60	50	50	50
Защита	IP X4				

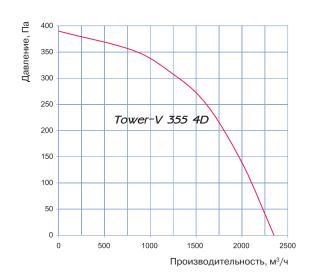

Габаритные размеры

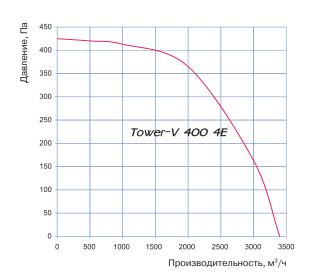


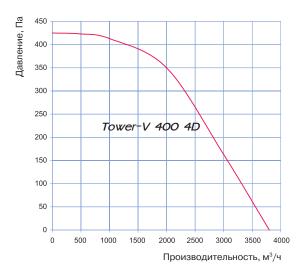

Тип	Размеры, мм				Macca,	
IVIII	ØD	Н	L2	L1	L	КГ
Tower-V 220 2E	245	275	460	245	338	8,9
Tower-V 225 2E	210	275	460	245	338	9,6
Tower-V 250 2E	286	275	520	330	400	12,0
Tower-V 280 2E	286	275	520	330	400	12,7
Tower-V 310 4E	286	330	560	330	438	17,8
Tower-V 310 4D	286	330	560	330	438	17,8
Tower-V 355 4E	438	420	783	450	598	22,0
Tower-V 355 4D	438	420	783	450	598	22,0
Tower-V 400 4E	438	420	783	450	598	27,5
Tower-V 450 4E	438	454	872	450	668	30,0
Tower-V 400 4D	438	420	783	450	598	27,5
Tower-V 450 4D	438	454	872	450	668	30,0
Tower-V 500 6E	438	454	872	450	668	33,8

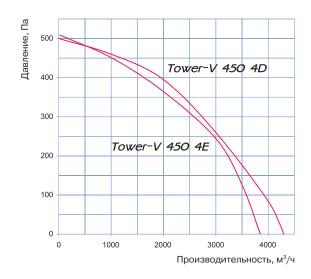


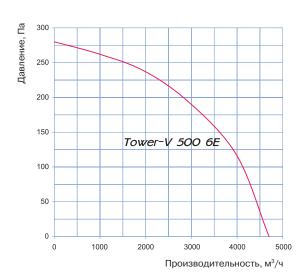












Центробежный крышный вентилятор с EC-мотором

Tower-VEC

Производительность – до $11400 \,\mathrm{M}^3/\mathrm{4}$

Применение

- □ Вытяжные вентиляционные системы различных помещений.
- Монтаж на крыше зданий.
- Для крыш любого типа или вертикальных вентиляционных шахт.
- Для создания экономичных и управляемых систем вентиляции.

Конструкция

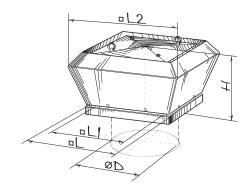
- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской, стойкой к атмосферным воздействиям.
- □ Выброс воздуха осуществляется вертикально.
- Вентилятор оборудован клеммной коробкой для подключения питания.
- Вентилятор рассчитан на продолжительную работу без отключения от сети.
- Верхняя крышка оснащена двумя рым-болтами для удобства транспортировки вентилятора на крышу с помощью подъёмных механизмов.
- □ Для крепления к поверхности крыши или монтажной раме предусмотрена присоединительная пластина.

Двигатель .

- Высокоэффективный ЕС-мотор постоянного тока с внешним ротором и рабочим колесом с назад загнутыми лопатками.
- EC-технологии отвечают самым последним требованиям для создания энергосберегающей и высокоэффективной вентиляции.
- □ Потребление электроэнергии ЕС-моторов на 50% меньше, чем у обычных двигателей, при этом КПД достигает 90%.
- □ ЕС-моторы отличаются высокой производительностью, низким уровнем шума и оптимальным управлением во всём диапазоне скоростей вращения.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

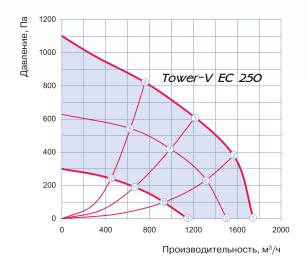
Управление и регулировка скорости

■ Вентилятор управляется при помощи внешнего управляющего сигнала 0-10 В (например, регулятора для ЕС-моторов CDT E/0-10).

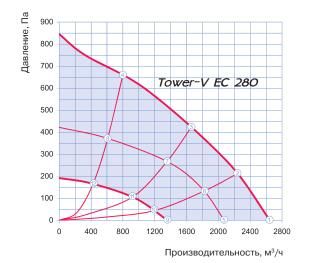

- □ Регулировка производительности в зависимости от различных параметров (уровень температуры, давление, задымленность и т.д).
- □ При изменении управляющего параметра ЕС-мотор изменяет скорость вращения для обеспечения оптимального расхода воздуха.
- Вентилятор может работать в электрической сети с частотой 50 Гц и 60 Гц, что не отображается на максимальной скорости вращения.
- □ Возможен обмен данными между ПК и вентилятором для задания и контроля рабочих характеристик.
- Вентиляторы с ЕС-моторами можно объединять в единую компьютерную сеть для централизованного управления вентиляции, что позволяет настроить систему в соответствии с требованиями конкретного потребителя.

Монтаж

- □ Вентиляторы устанавливаются на кровле непосредственно над вентиляционным каналом или шахтой.
- □ Вентилятор присоединяется к квадратному воздуховоду или к монтажной раме типа MRDL/MRIDL (см. принадлежности).
- ☐ Для присоединения круглого воздуховода используется контрфланец типа FDL (см. принадлежности), который крепится к основанию вентилятора.
- ☐ Для предотвращения обратной тяги при выключенной системе вентиляции используются обратные клапаны типа KDL (см. принадлежности).
- ☐ Для исключения передачи вибрации от вентиляторов к воздуховоду используюся гибкие вставки типа VDL (см. принадлежности).
- □ Подача питания осуществляется через выносную клеммную коробку.

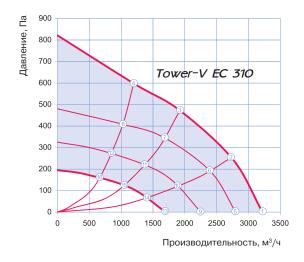


Габаритные размеры _



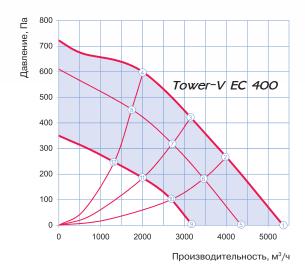
Тип	Размеры, мм					Macca,
IMII	ØD	Н	L	L1	L2	КГ
Tower-V EC 250	285	320	435	330	528	16
Tower-V EC 280	285	327	435	330	557	18
Tower-V EC 310	285	327	435	330	557	21
Tower-V EC 355	438	387	595	450	708	38
Tower-V EC 400	438	387	595	450	708	82
Tower-V EC 450	438	464	665	535	898	84
Tower-V EC 500	438	464	665	535	898	88
Tower-V EC 560	605	560	940	750	1150	98

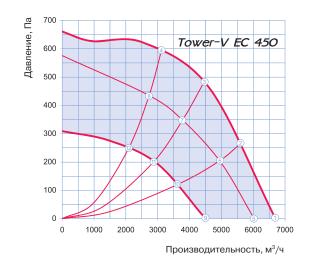
Параметры	Tower-V EC 250	Tower-V EC 280
Напряжение, В / 50/60 Гц	1~ 200-277	1~ 200-277
Потребляемая мощность, кВт	0,485	0,455
Ток, А	3,0	2,8
Максимальный расход воздуха, м ³ /ч	1750	2650
Частота вращения, мин ⁻¹	3580	2600
Уровень звукового давления на расст. 3 м, dB(A)	47	47
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +40
Защита	IP X4	IP X4


точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	380	2.30	3580
2	465	3.00	3460
3	485	3.00	3460
4	440	2.40	3520
5	193	1.20	2830
6	245	1.50	2830
7	260	1.60	2830
8	225	1.40	2830
9	80	0.50	2000
10	100	0.60	2000
11	106	0.70	2000
12	94	0.60	2000

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	380	2.30	3580
2	465	3.00	3460
3	485	3.00	3460
4	440	2.40	3520
5	193	1.20	2830
6	245	1.50	2830
7	260	1.60	2830
8	225	1.40	2830
9	80	0.50	2000
10	100	0.60	2000
11	106	0.70	2000
12	94	0.60	2000

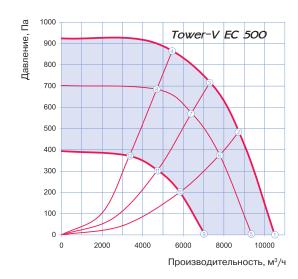
Параметры	Tower-V EC 310	Tower-V EC 355
Напряжение, В / 50/60 Гц	1~ 200-277	3~ 380-480
Потребляемая мощность, кВт	0,48	0,94
Ток, А	3,1	1,5
Максимальный расход воздуха, м ³ /ч	3220	4500
Частота вращения, мин ⁻¹	2300	2215
Уровень звукового давления на расст. 3 м, dB(A)	48	51
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +60
Защита	IP X4	IP X4

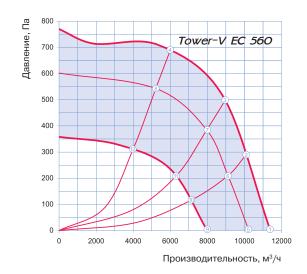


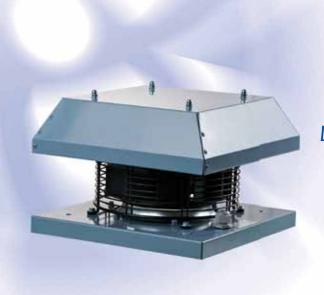

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	370	2.35	2300
2	445	2.85	2215
3	480	3.10	2170
4	448	2.85	2220
5	210	1.30	1900
6	284	1.70	1900
7	312	1.80	1900
8	278	1.70	1900
9	124	0.80	1560
10	158	1.00	1560
11	175	1.10	1560
12	158	1.00	1560
13	57	0.40	1200
14	73	0.50	1200
15	80	0.50	1200
16	70	0.50	1200

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	700	1.30	2205
2	880	1.40	2215
3	940	1.50	2215
4	850	1.40	2215
5	380	0.70	1825
6	470	0.90	1805
7	490	0.90	1790
8	460	0.90	1800
9	170	0.40	1335
10	200	0.40	1315
11	210	0.40	1315
12	190	0.40	1310

Параметры	Tower-V EC 400	Tower-V EC 450
Напряжение, В / 50/60 Гц	3~ 380-480	3~ 380-480
Потребляемая мощность, кВт	0,77	1,01
Ток, А	1,3	1,6
Максимальный расход воздуха, м ³ /ч	5360	6700
Частота вращения, мин ⁻¹	1755	1560
Уровень звукового давления на расст. 3 м, dB(A)	53	55
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +60
Защита	IP X4	IP X4


точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	630	1.10	1755
2	750	1.30	1760
3	770	1.30	1760
4	720	1.20	1760
5	400	0.80	1510
6	420	0.80	1470
7	430	0.80	1465
8	410	0.80	1485
9	170	0.40	1100
10	180	0.40	1090
11	180	0.40	1085
12	180	0.40	1095


точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	690	1.10	1560
2	910	1.50	1555
3	1010	1.60	1555
4	960	1.50	1560
5	430	0.80	1345
6	530	1.00	1315
7	580	1.00	1300
8	540	1.00	1315
9	190	0.40	985
10	220	0.50	970
11	250	0.50	965
12	230	0.50	970


Параметры	Tower-V EC 500	Tower-V EC 560
Напряжение, В / 50/60 Гц	3~ 380-480	3~ 380-480
Потребляемая мощность, кВт	2,7	2,3
Ток, А	4,3	3,6
Максимальный расход воздуха, м ³ /ч	10500	11400
Частота вращения, мин ⁻¹	1700	1350
Уровень звукового давления на расст. 3 м, dB(A)	63	65
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +60
Защита	IP X4	IP X4

точка	Р, (Вт)	I, (A)	n, (мин⁻¹)
1	1850	2.90	1700
2	2500	3.90	1700
3	2650	4.10	1700
4	2400	3.60	1700
5	1300	2.10	1500
6	1700	2.60	1500
7	1750	2.70	1500
8	1650	2.60	1500
9	570	1.10	1100
10	700	1.30	1100
11	750	1.30	1100
12	700	1.30	1100

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	1330	2.20	1350
2	1900	2.90	1350
3	2150	3.40	1350
4	2100	2.20	1350
5	900	1.60	1200
6	1300	2.10	1200
7	1550	2.50	1200
8	1430	2.30	1200
9	450	0.90	910
10	600	1.10	910
11	700	1.20	910
12	650	1.20	910

Центробежный крышный вентилятор *Tower-H*

Производительность — до 4700 м³/ч

- □ Вытяжные вентиляционные системы различных помещений.
- Монтаж на крыше зданий.
- Для крыш любого типа или вертикальных вентиляционных шахт.

Конструкция

- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской, стойкой к атмосферным воздействиям.
- □ Выброс воздуха осуществляется горизонтально.
- Вентилятор оборудован клеммной коробкой для подключения питания.
- Вентилятор рассчитан на продолжительную работу без отключения от сети.
- Крыльчатка защищена защитной решёткой.
- Верхняя крышка оснащена двумя рым-болтами для удобства транспортировки вентилятора на крышу с помощью подъёмных механизмов.
- □ Для крепления к поверхности крыши предусмотрена присоединительная пластина.

Двигатель

- □ Применяются 2-х, 4-х или 6-ти полюсные асинхронные двигатели с внешним ротором и центробежным рабочим колесом с назад загнутыми лопатками.
- □ Исполнение двигателей однофазное (E) или трёхфазное (D).
- Турбина динамически сбалансирована.
- □ Двигатели оснащёны шариковыми подшипниками для большего срока эксплуатации.
- □ Тепловая защита от перегрева осуществляется при помощи

встроенных термоконтактов с выведенными клеммами для подключения внешних устройств защиты.

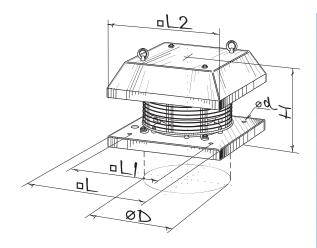
Выводы термоконтактов предназначены для подключения в соответствующие цепи контактера, реле перегрузки или определённым клеммам автотрансформаторного или тиристорного регулятора.

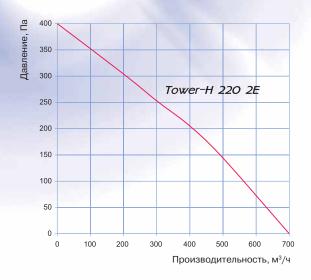
Регулировка скорости

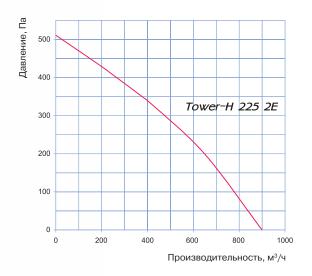
□ Плавная или ступенчатая регулировка при помощи тиристорного или трансформаторного регулятора (приобретается отдельно).

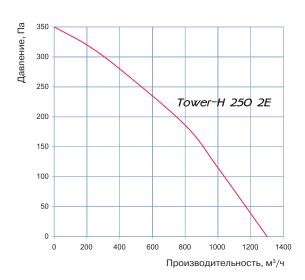
Монтаж

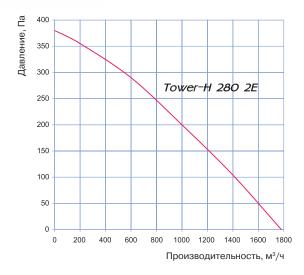
- □ Вентиляторы устанавливаются вертикально на кровле, непосредственно над вентиляционным каналом или шахтой.
- □ Присоединение вентиляторов к вентиляционному каналу осуществляется при помощи входного фланца, который крепится непосредственно к основанию вентиляторов.
- □ В основании корпуса предусмотрены отверстия для крепежных болтов, которыми вентилятор крепится к неподвижной ровной поверхности или крышному боксу.
- □ Крышный бокс, входной фланец и крепежные болты не входят в комплект поставки и приобретаются отдельно.
- □ Подача питания осуществляется через выносную клеммную коробку.

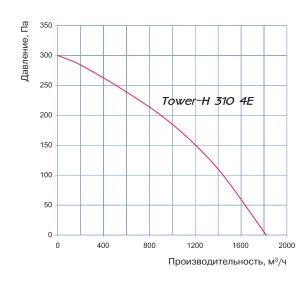

Параметры	Tower-H 220 2E	Tower-H 225 2E	Tower-H 250 2E	Tower-H 280 2E
Напряжение, В / 50 Гц	230	230	230	230
Потребляемая мощность, Вт	85	135	155	225
Ток, А	0,38	0,6	0,7	1,0
Максимальный расход воздуха, м ³ /ч	700	900	1300	1780
Частота вращения, мин ⁻¹	2700	2650	2600	2700
Уровень звукового давления на расст. 3 м, dB(A)	49	49	65	66
Макс. темп. перемещаемого воздуха, °C	55	55	50	50
Защита	IP X4	IP X4	IP X4	IP X4

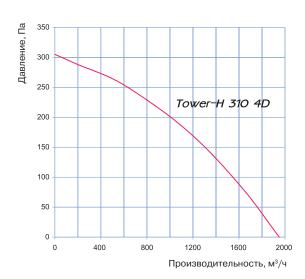

Параметры	Tower-H 310 4E	Tower-H 310 4D	Tower-H 355 4E	Tower-H 355 4D
Напряжение, В / 50 Гц	230	400	230	400
Потребляемая мощность, Вт	120	110	245	170
Ток, А	0,54	0,32	1,12	0,52
Максимальный расход воздуха, м ³ /ч	1820	1950	2800	2350
Частота вращения, мин ⁻¹	1370	1400	1420	1400
Уровень звукового давления на расст. 3 м, dB(A)	45	53	46	53
Макс. темп. перемещаемого воздуха, °C	85	65	50	70
Защита	IP X4	IP X4	IP X4	IP X4

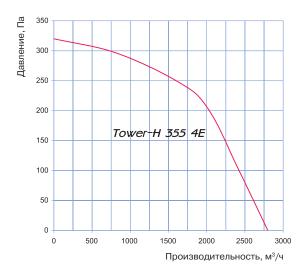

Параметры	Tower-H 400 4E	Tower-H 400 4D	Tower-H 450 4E	Tower-H 450 4D	Tower-H 500 6E
Напряжение, В / 50 Гц	230	400 Y	230	400 Y	230
Потребляемая мощность, Вт	480	385	640	470	385
Ток, А	2,4	0,7	3,1	0,82	1,82
Максимальный расход воздуха, м ³ /ч	3400	3800	3850	4300	4700
Частота вращения, мин ⁻¹	1400	1430	1350	1430	880
Уровень звукового давления на расст. 3 м, dB(A)	52	52	53	53	47
Макс. темп. перемещаемого воздуха, °C	80	60	50	50	50
Защита	IP X4				

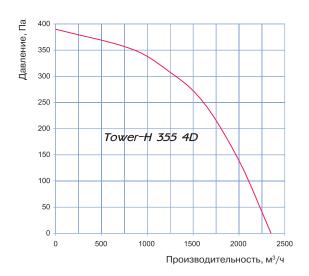

Габаритные размеры

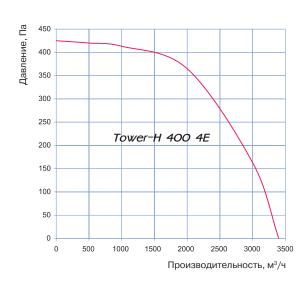


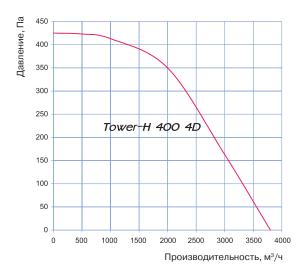

Тип		Размеры, мм					Масса,
IVIII	ØD	Ød	Н	L	L1	L2	КГ
Tower-H 220 2E	245	10	228	338	245	338	6,9
Tower-H 225 2E	210	10	228	338	245	338	7,1
Tower-H 250 2E	286	10	265	400	330	365	10,1
Tower-H 280 2E	286	10	265	400	330	365	10,2
Tower-H 310 4E	286	10	300	438	330	400	10,2
Tower-H 310 4D	286	10	300	438	330	400	10,2
Tower-H 355 4E	438	12	348	598	450	550	15,6
Tower-H 355 4D	438	12	325	598	450	550	15,6
Tower-H 400 4E	438	12	348	598	450	550	21,0
Tower-H 450 4E	438	12	400	668	450	640	22,7
Tower-H 400 4D	438	12	348	598	450	550	22,0
Tower-H 450 4D	438	12	400	668	450	640	22,7
Tower-H 500 6E	438	12	465	668	450	640	26,6

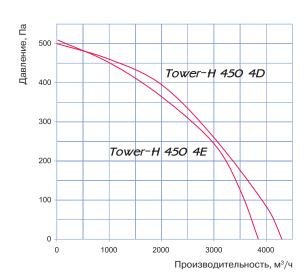


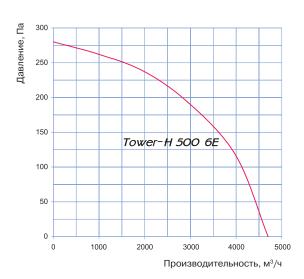












Крышный центробежный вентилятор с EC-мотором

Tower-HEC

Производительность – до $11400 \, \text{м}^3/\text{ч}$

Γ	1p	иг	ие	не	Н	и	е

- □ Вытяжные вентиляционные системы различных помещений.
- Монтаж на крыше зданий.
- Для крыш любого типа или вертикальных вентиляционных шахт.
- Для создания экономичных и управляемых систем вентиляции.

Конструкция

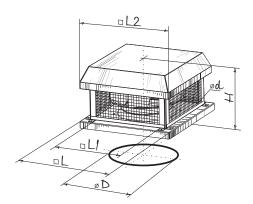
- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской, стойкой к атмосферным воздействиям.
- □ Выброс воздуха осуществляется горизонтально.
- Вентилятор оборудован клеммной коробкой для подключения питания
- Вентилятор рассчитан на продолжительную работу без отключения от сети.
- Крыльчатка защищена защитной решёткой.
- Верхняя крышка оснащена двумя рым-болтами для удобства транспортировки вентилятора на крышу с помощью подъёмных механизмов.
- □ Для крепления к поверхности крыши или монтажной раме предусмотрена присоединительная пластина.

Двигатель

- Высокоэффективный ЕС-мотор постоянного тока с внешним ротором и рабочим колесом с назад загнутыми лопатками.
- □ ЕС-технологии отвечают самым последним требованиям для создания энергосберегающей и высокоэффективной вентиляции.
- □ Потребление электроэнергии ЕС-моторов на 50% меньше, чем у обычных двигателей, при этом КПД достигает 90%.
- □ EC-моторы отличаются высокой производительностью, низким уровнем шума и оптимальным управлением во всём диапазоне скоростей вращения.
- Снабжен встроенной тепловой защитой с автоматическим перезапуском.
- □ Турбина динамически сбалансирована.

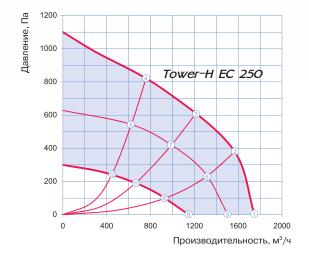
Управление и регулировка скорости :

□ Вентилятор управляется при помощи внешнего управляющего сигнала 0-10 В (например, регулятора для ЕС-моторов CDT E/0-10).

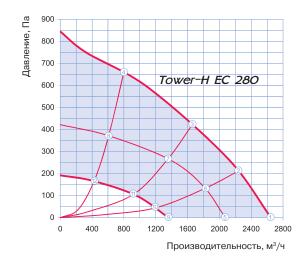

- □ Регулировка производительности в зависимости от различных параметров (уровень температуры, давление, задымленность и т.д).
- □ При изменении управляющего параметра ЕС-мотор изменяет скорость вращения для обеспечения оптимального расхода воздуха.
- Вентилятор может работать в электрической сети с частотой 50 Гц и 60 Гц, что не отображается на максимальной скорости вращения.
- □ Возможен обмен данными между ПК и вентилятором для задания и контроля рабочих характеристик.
- Вентиляторы с ЕС-моторами можно объединять в единую компьютерную сеть для централизованного управления вентиляции, что позволяет настроить систему в соответствии с требованиями конкретного потребителя.

Монтаж

- Вентиляторы устанавливаются на кровле непосредственно над вентиляционным каналом или шахтой.
- □ Вентилятор присоединяется к квадратному воздуховоду или к монтажной раме типа MRDL/MRIDL (см. принадлежности).
- ☐ Для присоединения круглого воздуховода используется контрфланец типа FDL (см. принадлежности), который крепится к основанию вентилятора.
- ☐ Для предотвращения обратной тяги при выключенной системе вентиляции использются обратные клапаны типа KDL (см. принадлежности).
- ☐ Для исключения передачи вибрации от вентиляторов к воздуховоду используются гибкие вставки типа VDL (см. принадлежности).
- □ Подача питания осуществляется через выносную клеммную коробку.

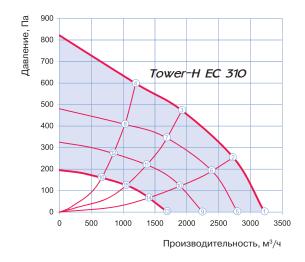


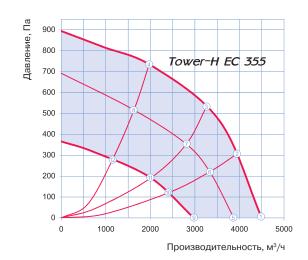
Габаритные размеры



Тип		Размеры, мм					Macca,
I VIII	ØD	Ød	Н	L	L1	L2	КГ
Tower-H EC 250	285	11	289	435	330	411	16
Tower-H EC 280	285	11	264	435	330	431	17
Tower-H EC 310	285	11	272	435	330	431	19
Tower-H EC 355	438	11	326	595	450	558	32
Tower-H EC 400	438	11	357	595	450	558	75
Tower-H EC 450	438	11	407	665	535	637	80
Tower-H EC 500	438	11	437	665	535	637	84
Tower-H EC 560	605	14	487	940	750	912	95

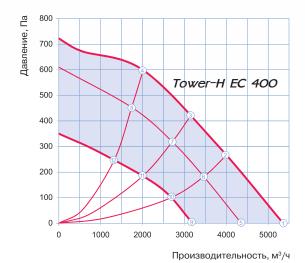
Параметры	Tower-H EC 250	Tower-H EC 280
Напряжение, В / 50/60 Гц	1~ 200-277	1~ 200-277
Потребляемая мощность, кВт	0,485	0,455
Ток, А	3,0	2,8
Максимальный расход воздуха, м ³ /ч	1750	2650
Частота вращения, мин ⁻¹	3580	2600
Уровень звукового давления на расст. 3 м, dB(A)	47	47
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +40
Защита	IP X4	IP X4

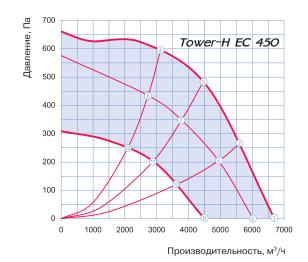

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	380	2.30	3580
2	465	3.00	3460
3	485	3.00	3460
4	440	2.40	3520
5	193	1.20	2830
6	245	1.50	2830
7	260	1.60	2830
8	225	1.40	2830
9	80	0.50	2000
10	100	0.60	2000
11	106	0.70	2000
12	94	0.60	2000



точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	380	2.30	3580
2	465	3.00	3460
3	485	3.00	3460
4	440	2.40	3520
5	193	1.20	2830
6	245	1.50	2830
7	260	1.60	2830
8	225	1.40	2830
9	80	0.50	2000
10	100	0.60	2000
11	106	0.70	2000
12	94	0.60	2000

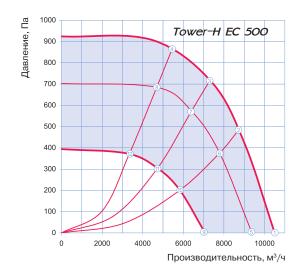
Параметры	Tower-H EC 310	Tower-H EC 355
Напряжение, В / 50/60 Гц	1~ 200-277	3~ 380-480
Потребляемая мощность, кВт	0,48	0,94
Ток, А	3,1	1,5
Максимальный расход воздуха, м ³ /ч	3220	4500
Частота вращения, мин ⁻¹	2300	2215
Уровень звукового давления на расст. 3 м, dB(A)	48	51
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +60
Защита	IP X4	IP X4

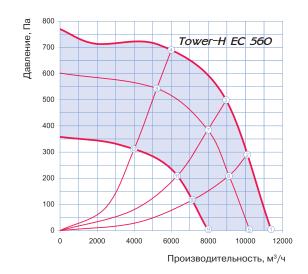


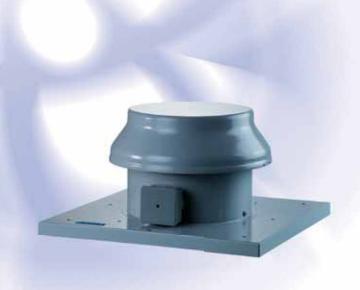

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	370	2.35	2300
2	445	2.85	2215
3	480	3.10	2170
4	448	2.85	2220
5	210	1.30	1900
6	284	1.70	1900
7	312	1.80	1900
8	278	1.70	1900
9	124	0.80	1560
10	158	1.00	1560
11	175	1.10	1560
12	158	1.00	1560
13	57	0.40	1200
14	73	0.50	1200
15	80	0.50	1200
16	70	0.50	1200

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	700	1.30	2205
2	880	1.40	2215
3	940	1.50	2215
4	850	1.40	2215
5	380	0.70	1825
6	470	0.90	1805
7	490	0.90	1790
8	460	0.90	1800
9	170	0.40	1335
10	200	0.40	1315
11	210	0.40	1315
12	190	0.40	1310

Параметры	Tower-H EC 400	Tower-H EC 450
Напряжение, В / 50/60 Гц	3~ 380-480	3~ 380-480
Потребляемая мощность, кВт	0,77	1,01
Ток, А	1,3	1,6
Максимальный расход воздуха, м ³ /ч	5360	6700
Частота вращения, мин ⁻¹	1755	1560
Уровень звукового давления на расст. 3 м, dB(A)	53	55
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +60
Защита	IP X4	IP X4


точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	630	1.10	1755
2	750	1.30	1760
3	770	1.30	1760
4	720	1.20	1760
5	400	0.80	1510
6	420	0.80	1470
7	430	0.80	1465
8	410	0.80	1485
9	170	0.40	1100
10	180	0.40	1090
11	180	0.40	1085
12	180	0.40	1095


точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	690	1.10	1560
2	910	1.50	1555
3	1010	1.60	1555
4	960	1.50	1560
5	430	0.80	1345
6	530	1.00	1315
7	580	1.00	1300
8	540	1.00	1315
9	190	0.40	985
10	220	0.50	970
11	250	0.50	965
12	230	0.50	970


Параметры	Tower-H EC 500	Tower-H EC 560
Напряжение, В / 50/60 Гц	3~ 380-480	3~ 380-480
Потребляемая мощность, кВт	2,7	2,3
Ток, А	4,3	3,6
Максимальный расход воздуха, м ³ /ч	10500	11400
Частота вращения, мин ⁻¹	1700	1350
Уровень звукового давления на расст. 3 м, dB(A)	63	65
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +60
Защита	IP X4	IP X4

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	1850	2.90	1700
2	2500	3.90	1700
3	2650	4.10	1700
4	2400	3.60	1700
5	1300	2.10	1500
6	1700	2.60	1500
7	1750	2.70	1500
8	1650	2.60	1500
9	570	1.10	1100
10	700	1.30	1100
11	750	1.30	1100
12	700	1.30	1100

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	1330	2.20	1350
2	1900	2.90	1350
3	2150	3.40	1350
4	2100	2.20	1350
5	900	1.60	1200
6	1300	2.10	1200
7	1550	2.50	1200
8	1430	2.30	1200
9	450	0.90	910
10	600	1.10	910
11	700	1.20	910
12	650	1.20	910

Осевой крышный вентилятор Тоwer-A

Производительность — до 2500 м³/ч

Применение

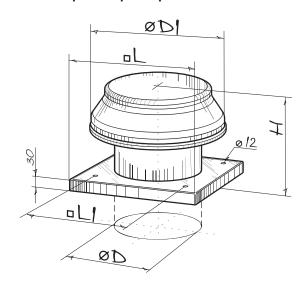
- □ Вытяжные вентиляционные системы различных помещений.
- Монтаж на крыше зданий.
- Для крыш любого типа или вертикальных вентиляционных шахт.

Конструкция

- □ Корпус и крыльчатка изготавливаются из стали и окрашиваются специальной полимерной краской, стойкой к атмосферным воздействиям.
- □ Выброс воздуха осуществляется горизонтально.
- Вентилятор оборудован клеммной коробкой для подключения питания.
- Вентилятор рассчитаны на продолжительную работу без отключения от сети.
- □ Для крепления к поверхности крыши предусмотрена присоединительная пластина.

Двигатель

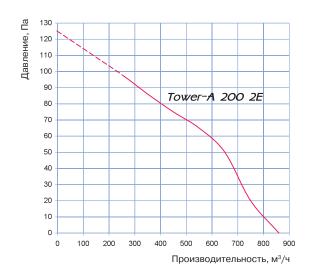
- 2-х или 4-х полюсные асинхронный двигатель с внешним ротором и крыльчаткой осевого типа.
- Исполнение двигателя однофазное (E) или трёхфазное (D).
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Тепловая защита от перегрева осуществляется при помощи встроенных термоконтактов с автоматическим перезапуском.

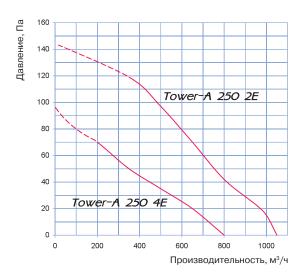

Регулировка скорости

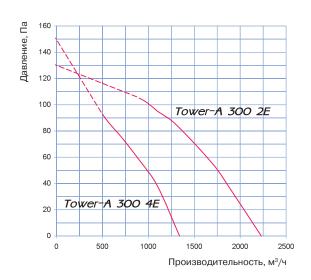
 Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

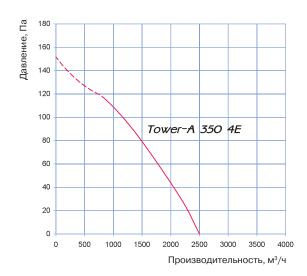
Монтаж

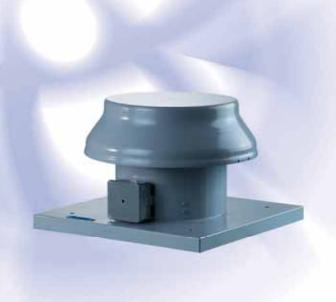
- Вентилятор устанавливается вертикально на кровле, непосредственно над вентиляционным каналом или шахтой.
- □ Присоединение вентилятора к вентиляционному каналу осуществляется при помощи входного фланца, который крепится непосредственно к основанию вентиляторов.
- □ В основании корпуса предусмотрены отверстия для крепежных болтов, которыми вентилятор крепится к неподвижной ровной поверхности или крышному боксу.
- □ Крышный бокс, входной фланец и крепежные болты не входят в комплект поставки и приобретаются отдельно.
- □ Подача питания осуществляется через выносную клеммную коробку.


Габаритные размеры




Тип	Размеры, мм					Magaza KE
I VIII	ØD	ØD1	Н	L	L1	Масса, кг
Tower-A 200 2E	207	341	220	410	245	4,3
Tower-A 250 2E	262	401	250	460	330	6,5
Tower-A 250 4E	262	401	250	460	330	6,5
Tower-A 300 2E	312	401	260	560	450	8,7
Tower-A 300 4E	312	401	260	560	450	8,7
Tower-A 350 4E	362	500	260	630	535	10,9




Параметры	Tower-A 200 2E	Tower-A 250 2E	Tower-A 250 4E	Tower-A 300 2E	Tower-A 300 4E	Tower-A 350 4E
Напряжение, В / 50 Гц	230	230	230	230	230	230
Потребляемая мощность, Вт	55	80	50	145	75	140
Ток, А	0,26	0,4	0,22	0,66	0,35	0,65
Максимальный расход воздуха, м ³ /ч	860	1050	800	2230	1340	2500
Частота вращения, мин ⁻¹	2300	2400	1380	2300	1350	1380
Уровень звукового давления на расст. 3 м, dB(A)	50	60	55	60	58	62
Макс. темп. перемещаемого воздуха, °C	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60	-30 +60
Защита	IP 54					

Осевой крышный вентилятор Tower-AL

Производительность — до 1700 м³/ч

Применение

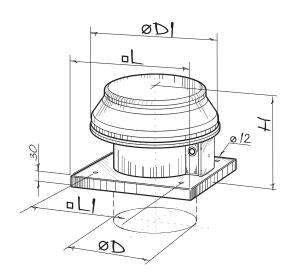
- Вытяжные вентиляционные системы различных помещений.
- Монтаж на крыше зданий.
- Для крыш любого типа или вертикальных вентиляционных шахт.

Конструкция

- □ Корпус изготавливается из стали и окрашивается специальной полимерной краской, стойкой к атмосферным воздействиям.
- Крыльчатка выполнена из алюминия.
- Выброс воздуха осуществляется горизонтально.
- Вентилятор оборудован клеммной коробкой для подключения питания
- Вентилятор рассчитан на продолжительную работу без отключения от сети.
- Для крепления к поверхности крыши предусмотрена присоединительная пластина.

Двигатель

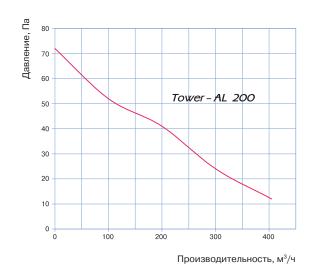
- Однофазный асинхронный двигатель с внешним ротором и крыльчаткой осевого типа.
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Тепловая защита от перегрева осуществляется при помощи встроенных термоконтактов с автоматическим перезапуском.

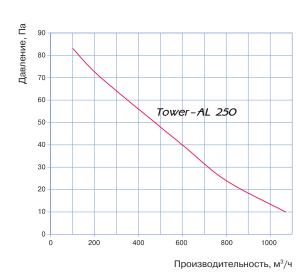

Регулировка скорости .

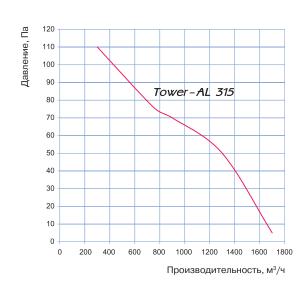
Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретается отдельно).

Монтаж

- Вентилятор устанавливается вертикально на кровле, непосредственно над вентиляционным каналом или шахтой.
- □ Присоединение вентиляторов к вентиляционному каналу осуществляется при помощи входного фланца, который крепится непосредственно к основанию вентиляторов.
- □ В основании корпуса предусмотрены отверстия для крепежных болтов, которыми вентилятор крепится к неподвижной ровной поверхности или крышному боксу.
- □ Крышный бокс, входной фланец и крепежные болты не входят в комплект поставки и приобретаются отдельно.
- □ Подача питания осуществляется через выносную клеммную коробку.


Габаритные размеры




Тип		Macca,				
	ØD	ØD1	Н	L	L1	КГ
Tower-AL 200	207	341	220	410	245	4,9
Tower-AL 250	262	401	250	460	330	6,8
Tower-AL 315	312	500	260	560	450	9,2

Параметры	Tower-AL 200	Tower-AL 250	Tower-AL 315	
Напряжение, В / 50 Гц	230	230	230	
Потребляемая мощность, Вт	43	68	110	
Ток, А	0,28	0,48	0,75	
Максимальный расход воздуха, м ³ /ч	405	1070	1700	
Частота вращения, мин ⁻¹	1300	1300	1300	
Уровень звукового давления на расст. 3 м, dB(A)	32	48	54	
Макс. темп. перемещаемого воздуха, °C	50	50	50	
Защита	IP X4	IP X4	IP X4	

Центробежный вентилятор для прямоугольных каналов Rov

Производительность — до $2970 \,\mathrm{M}^3/\mathrm{4}$

Прик	4011		40
пои	иен	ені	лe

- Приточные и вытяжные системы вентиляции различных помещений.
- Для прямоугольных воздуховодов сечением от 400х200 до 600х350 мм.

Конструкция

- □ Корпус и рабочее колесо изготавливаются из оцинкованной стали, стойкой к атмосферным воздействиям.
- Вентилятор рассчитаны на продолжительную работу без отключения от сети.
- □ Для крепления к прямоугольным воздуховодам оснащен стандартными присоединительными фланцами шириной 20 мм.
- □ В корпусе предусмотрена технологическая крышка для ревизии и технического обслуживания двигателя.
- Вентилятор оборудован встроенной в корпус клеммной коробкой с выведенным гермовводом для подключения питания.

Двигатель

- □ 2-х или 4-х полюсный асинхронный двигатель с внешним ротором и рабочим колесом с назад загнутыми лопатками.
- □ Исполнение двигателя однофазное (E) или трёхфазное (D).
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Турбина динамически сбалансирована.
- □ Тепловая защита от перегрева осуществляется при помощи встроенных термоконтактов с автоматическим перезапуском или с выведенными клеммами для подключения внешних устройств защиты.
- Выводы термоконтактов предназначены для подключения

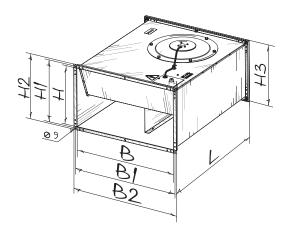
в соответствующие цепи контактера, реле перегрузки или определённым клеммам автотрансформаторного или тиристорного регулятора.

Регулировка скорости

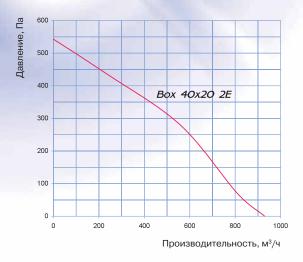
Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретаются отдельно).

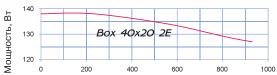
Монтаж

- Вентилятор предназначены для монтажа в прямоугольные каналы и может устанавливаться в любом положении.
- □ На фланцах вентилятора предусмотрены отверстия для крепежных болтов, которыми он напрямую крепится к воздуховодам.
- Возможен монтаж с круглым каналом на выходном фланце при помощи дополнитеьного переходника с круглым патрубком (приобретается отдельно).
- □ При подсоединении вентилятора к вентиляционным каналам через гибкие вставки, необходимо обеспечить его крепление к монтажным конструкциям при помощи опор, подвесов или кронштейнов.
- □ При монтаже необходимо предусмотреть доступ к технологической крышке для обслуживания вентилятора.

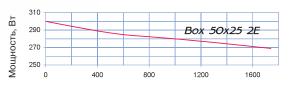


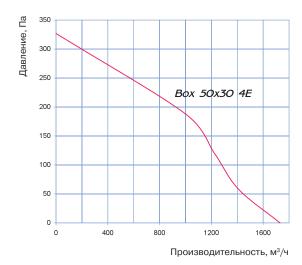
Параметры	Box 40x20 2E	Box 50x25 2E	Box 50x30 4E	
Напряжение, В / 50 Гц	230	230	230	
Потребляемая мощность, Вт	138	305	140	
Ток, А	0,60	1,32	0,57	
Максимальный расход воздуха, м ³ /ч	930	1720	1700	
Частота вращения, мин ⁻¹	2600 2550		1390	
Уровень звукового давления на расст. 3 м, dB(A)	59	61	53	
Макс. темп. перемещаемого воздуха, °C	-25 +45	-25 +45	-25 +45	
Защита	IPX4	IPX4	IPX4	

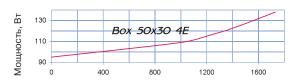

Параметры	Box 50x30 4D	Box 60x30 4E	Box 60x30 4D
Напряжение, В / 50 Гц	400	230	400
Потребляемая мощность, Вт	136	220	230
Ток, А	0,34	0,90	0,52
Максимальный расход воздуха, м ³ /ч	1380	2470	2530
Частота вращения, мин ⁻¹	1360	1400	1360
Уровень звукового давления на расст. 3 м, dB(A)	53	55	53
Макс. темп. перемещаемого воздуха, °C	-25 +65	-25 +45	-25 +70
Защита	IPX4	IPX4	IPX4

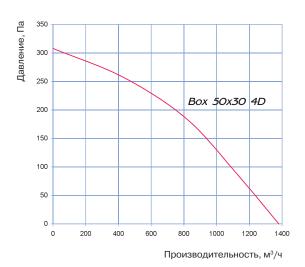

Параметры	Box 60x35 4E	Box 60	x35 4D	
Напряжение, В / 50 Гц	230	400∆	400Y	
Потребляемая мощность, Вт	470	510	380	
Ток, А	2,37	1,41	0,70	
Максимальный расход воздуха, м ³ /ч	2950	2970	2660	
Частота вращения, мин ⁻¹	1370	1415	1235	
Уровень звукового давления на расст. 3 м, dB(A)	67	64	63	
Макс. темп. перемещаемого воздуха, °C	-40 +80	-40 +60	-40 +80	
Защита	IPX4	IPX4		

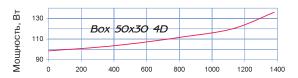
Габаритные размеры .

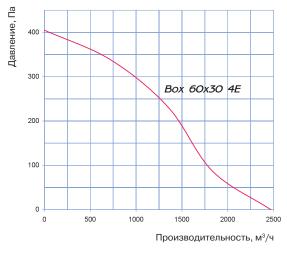


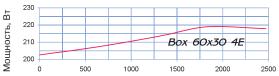

Тип	Размеры, мм						Macca,		
	В	B1	B2	Н	H1	H2	Н3	L	КГ
Box 40x20 2E	400	420	440	200	220	240	240	500	13,6
Box 50x25 2E	500	520	540	250	270	290	290	640	17,7
Box 50x30 4E	500	520	540	300	320	340	340	680	25,5
Box 50x30 4D	500	520	540	300	320	340	340	680	25,5
Box 60x30 4E	600	620	640	300	320	340	342	680	31,5
Box 60x30 4D	600	620	640	300	320	340	342	680	32,5
Box 60x35 4E	600	620	640	350	370	390	390	735	41,5
Box 60x35 4D	600	620	640	350	370	390	390	735	41,5

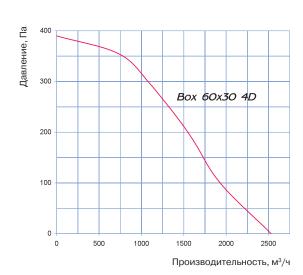


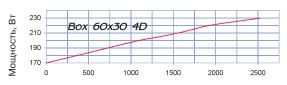


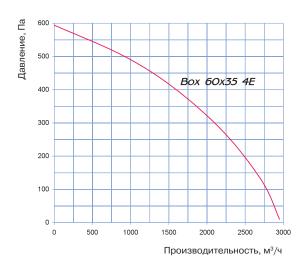


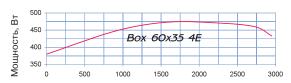


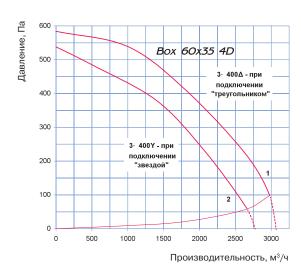


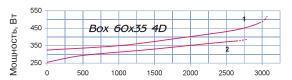












Центробежный вентилятор с ЕС-мотором для прямоугольных каналов

Box-EC

Производительность — до 10850 м³/ч

Применение
Применение

- Приточные и вытяжные системы вентиляции различных помещений.
- Для создания экономичных и управляемых систем вентиляции.
- Для прямоугольных воздуховодов сечением от 600х300 до 1000х500 мм.

Конструкция

- □ Корпус и рабочее колесо изготавливаются из оцинкованной стали, стойкой к атмосферным воздействиям.
- Вентилятор рассчитан на продолжительную работу без отключения от сети.
- □ Для крепления к прямоугольным воздуховодам оснащен стандартными присоединительными фланцами шириной 20 мм.
- □ В корпусе предусмотрена технологическая крышка для ревизии и технического обслуживания двигателя.

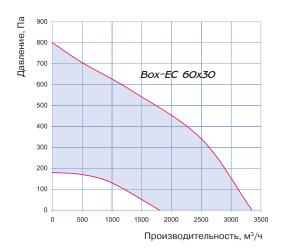
Двигатель

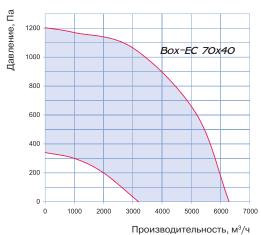
- □ Высокоэффективный ЕС-мотор постоянного тока с внешним ротором и рабочим колесом с назад загнутыми лопатками.
- □ ЕС-технологии отвечают самым последним требованиям для создания энергосберегающей и высокоэффективной вентиляции.
- □ Потребление электроэнергии ЕС-моторов до на 50% меньше чем у обычных двигателей, при этом КПД достигает 90%.
- □ ЕС-моторы отличаются высокой производительностью, низким уровнем шума и оптимальным управлением во всём диапазоне скоростей вращения.
- □ Исполнение двигателя однофазное или трехфазное.
- □ Турбина динамически сбалансирована.

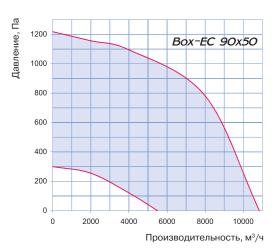
Управление и регулировка скорости

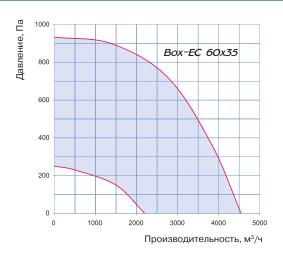
- □ Вентилятор управляется при помощи внешнего управляющего сигнала 0-10 В (например, регулятора для ЕС-моторов CDT E/0-10).
- Регулировка производительности может происходит в

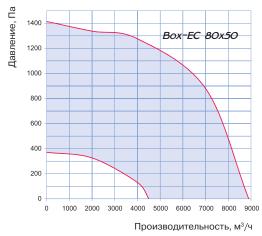
зависимости от различных параметров (уровень температуры, давление, задымленность и т.д).

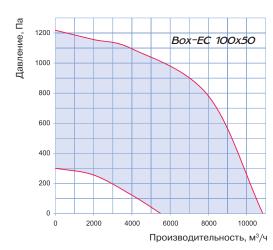

- □ При изменении управляющего параметра ЕС-мотор изменяет скорость вращения для обеспечения оптимального расхода воздуха.
- Вентилятор может работать в электрической сети с частотой 50 Гц и 60 Гц, что не отображается на максимальной скорости вращения.
- □ Возможен обмен данными между ПК и вентилятором для задания и контроля рабочих характеристик.
- Вентиляторы с ЕС-моторами можно объединять в единую компьютерную сеть для централизованного управления, что позволяет настроить систему вентиляции в соответствии с требованиями конкретного потребителя.

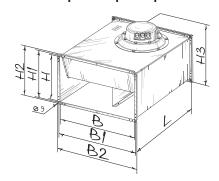

Монтаж


- Вентилятор предназначен для монтажа в прямоугольные каналы и может устанавливаться в любом положении.
- □ На фланцах вентилятора предусмотрены отверстия для крепежных болтов, которыми он напрямую крепится к воздуховодам.
- □ Возможен монтаж с круглым каналом на выходном фланце при помощи дополнитеьного переходника с круглым патрубком (приобретается отдельно).
- При подсоединении вентилятора к вентиляционным каналам через гибкие вставки, необходимо обеспечить его крепление к монтажным конструкциям при помощи опор, подвесов или кронштейнов.
- □ При монтаже необходимо предусмотреть доступ к технологической крышке для обслуживания вентилятора.


Параметры	Box-EC 60x30	Box-EC 60x35	Box-EC 70x40	Box-EC 80x50	Box-EC 90x50	Box-EC 100x50
Напряжение, В / 50/60 Гц	1~ 200-277	3~ 380-480	3~ 380-480	3~ 380-480	3~ 380-480	3~ 380-480
Потребляемая мощность, кВт	0,48	0,99	1,70	2,95	2,98	2,98
Ток, А	3,10	1,70	2,60	4,60	4,60	4,60
Максимальный расход воздуха, м ³ /ч	3350	4550	6300	8900	10850	10850
Частота вращения, мин ⁻¹	2300	2580	2600	2500	2040	2040
Уровень звукового давления на расст. 3 м, dB(A)	58	60	63	65	69	69
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +50	-25 +40	-25 +40	-25 +40	-25 +40
Защита	IP X4					







Габаритные размеры

Тип	Размеры, мм							Macca,	
IVIII	В	B1	B2	Н	H1	H2	Н3	L	КГ
Box-EC 60x30	600	620	640	300	320	340	430	680	35,0
Box-EC 60x35	600	620	640	350	370	390	480	735	49,5
Box-EC 70x40	700	720	740	400	420	440	540	780	60,0
Box-EC 80x50	800	820	840	500	520	540	640	880	70,0
Box-EC 90x50	900	920	940	500	520	540	640	954	90,0
Box-EC 100x50	1000	1020	1040	500	520	540	640	954	95,0

Канальный центробежный вентилятор с $\it EC$ -мотором

Box-IEC

Производительность – до $10850 \,\mathrm{M}^3/\mathrm{4}$

Применение

- Приточные и вытяжные системы вентиляции различных помещений.
- Для создания экономичных и управляемых систем вентиляции.
- Для прямоугольных воздуховодов сечением от 600х300 до 1000х500 мм.

Конструкция

- Корпус и рабочее колесо изготавливаются из оцинкованной стали.
- □ Тепло и звукоизоляция корпуса из негорючей минеральной ваты толщиной 50 мм.
- Вентилятор рассчитан на продолжительную работу без отключения от сети.
- □ На корпусе вентилятора предусмотрены отверстия с резьбой для присоединения прямоугольных воздуховодов.
- □ Для ревизии и технического обслуживания двигателя на корпусе предусмотрена технологическая откидывающаяся крышка.

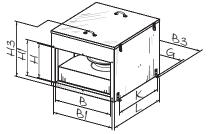
□ Для удобного монтажа корпус оснащён крепёжными уголками с резиновыми вибровставками.

Двигатель

■ Высокоэффективный ЕС-мотор постоянного тока с внешним ротором и рабочим колесом с назад загнутыми лопатками.

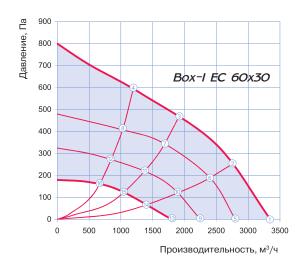
- EC-технологии отвечают самым последним требованиям для создания энергосберегающей и высокоэффективной вентиляции.
- □ Потребление электроэнергии ЕС-моторов до на 50% меньше, чем у обычных двигателей, при этом КПД достигает 90%.
- □ ЕС-моторы отличаются высокой производительностью, низким уровнем шума и оптимальным управлением во всём диапазоне скоростей вращения.
- □ Турбина динамически сбалансирована.

Управление и регулировка скорости

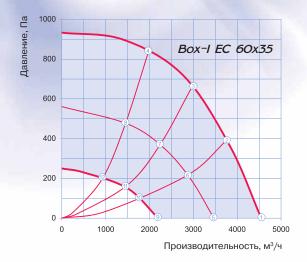

- □ Вентилятор управляется при помощи внешнего управляющего сигнала 0-10 В (например, регулятора для ЕС-моторов CDT E/0-10).
- □ Регулировка производительности в зависимости от различных параметров (уровень температуры, давление, задымленность и т.д).
- □ При изменении управляющего параметра ЕС-мотор изменяет скорость вращения для обеспечения оптимального расхода воздуха.
- □ Вентилятор может работать в электрической сети с частотой 50 Гц и 60 Гц, что не отображается на максимальной скорости вращения.
- □ Возможен обмен данными между ПК и вентилятором для задания и контроля рабочих характеристик.
- Вентиляторы с ЕС-моторами можно объединять в единую компьютерную сеть для централизованного управления вентиляцией, что позволяет настроить систему в соответствии с требованиями конкретного потребителя.

Монтаж

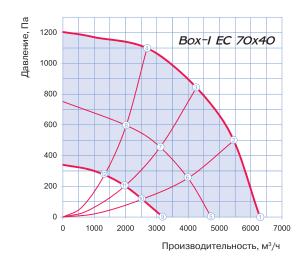
- □ Вентилятор предназначен для монтажа с воздуховодами прямоугольного сечения и может.
- □ На фланцах вентилятора предусмотрены отверстия с резьбой для соединения с воздуховодами, при помощи крепежных болтов.
- □ При подсоединении вентилятора к воздуховодам через гибкие вставки, необходимо обеспечить его крепление к монтажным конструкциям при помощи опор, подвесов или кронштейнов.
- □ При монтаже необходимо предусмотреть доступ к технологической крышке для обслуживания вентилятора.



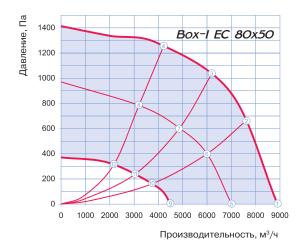
Габаритные размеры



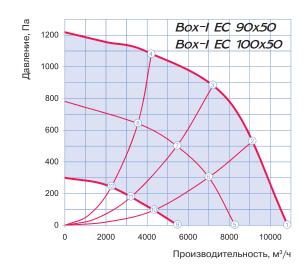
Тип	Размеры, мм							Macca,		
IVIII	В	Н	B1	H1	В3	Н3	L	G	K	КГ
Box-I EC 60x30	600	300	620	320	775	530	752	745	500	55
Box-I EC 60x35	600	350	620	370	775	630	802	745	500	66
Box-I EC 70x40	700	400	720	420	875	690	880	845	742	90
Box-I EC 80x50	800	500	820	520	975	810	935	945	800	113
Box-I EC 90x50	900	500	920	520	1075	810	1000	1045	800	128
Box-I EC 100x50	1000	500	1020	520	1175	810	1000	1145	800	135


Параметры	Box-I EC 60x30	Box-I EC 60x35	Box-I EC 70x40	Box-I EC 80x50	Box-I EC 90x50	Box-I EC 100x50
Напряжение, В / 50/60 Гц	1~ 200-277	3~ 380-480	3~ 380-480	3~ 380-480	3~ 380-480	3~ 380-480
Потребляемая мощность, кВт	0,48	0,99	1,70	2,95	2,98	2,98
Ток, А	3,10	1,70	2,60	4,60	4,60	4,60
Максимальный расход воздуха, м ³ /ч	3350	4550	6300	8900	10850	10850
Частота вращения, мин ⁻¹	2300	2580	2600	2500	2040	2040
Уровень звукового давления на расст. 3 м, dB(A)	49	51	54	57	60	60
Макс. темп. перемещаемого воздуха, °С	-25 +60	-25 +50	-25 +40	-25 +40	-25 +40	-25 +40
Защита	IP X4					

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	370	2.35	2300
2	445	2.85	2215
3	480	3.10	2170
4	448	2.85	2220
5	210	1.30	1900
6	284	1.70	1900
7	312	1.80	1900
8	278	1.70	1900
9	124	0.80	1560
10	158	1.00	1560
11	175	1.10	1560
12	158	1.00	1560
13	57	0.40	1200
14	73	0.50	1200
15	80	0.50	1200
16	70	0.50	1200



точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	669	1.17	2580
2	862	1.46	2580
3	990	1.70	2580
4	907	1.53	2580
5	288	0.57	1930
6	348	0.69	1910
7	396	0.77	1900
8	360	0.72	1905
9	123	0.28	1305
10	144	0.33	1305
11	151	0.34	1305
12	151	0.34	1300



точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	1140	1.74	2600
2	1510	2.30	2600
3	1700	2.60	2600
4	1594	2.42	2600
5	436	0.73	1940
6	541	0.88	1910
7	533	0.95	1885
8	558	0.91	1905
9	194	0.40	1330
10	226	0.45	1315
11	239	0.47	1305
12	236	0.46	1305

точка	Р, (Вт)	I, (A)	n, (мин⁻¹)
1	2009	3.07	2500
2	2738	4.19	2500
3	2950	4.60	2500
4	2748	4.20	2500
5	945	1.48	1945
6	1170	1.80	1920
7	1247	1.91	1915
8	1193	1.84	1920
9	308	0.59	1255
10	416	0.76	1260
11	417	0.77	1255
12	410	0.75	1255

точка	Р, (Вт)	I, (A)	n, (мин ⁻¹)
1	1988	3.00	2040
2	2596	3.94	2040
3	2980	4.60	2040
4	2638	3.99	2040
5	818	1.28	1550
6	1054	1.63	1545
7	1195	1.83	1550
8	1075	1.66	1570
9	313	0.60	1045
10	362	0.70	1025
11	387	0.72	1010
12	362	0.69	1005

□ Вентилятор с такой турбиной отличается своими

производительность и большой перепад давления).

□ Турбина динамически сбалансирована.

срока эксплуатации.

превосходными аэродинамическими характеристиками (высокая

□ Исполнение двигателя однофазное (E) или трёхфазное (D).

□ Двигатель оснащен шариковыми подшипниками для большего

Применение

Центробежный вентилятор для прямоугольных каналов

Box-F

Производительность — до 9540 м³/ч

при помощи дополнитеьного переходника с круглым патрубком

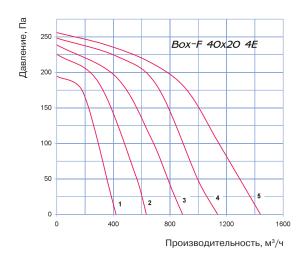
крепление к монтажным конструкциям при помощи опор, подвесов

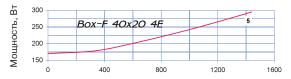
□ При подсоединении через гибкие вставки, необходимо

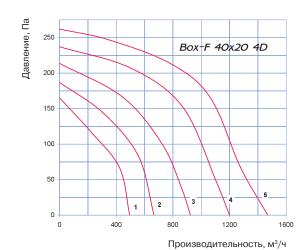
□ При монтаже необходимо предусмотреть доступ к

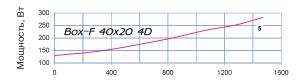
технологической крышке для обслуживания вентилятора.

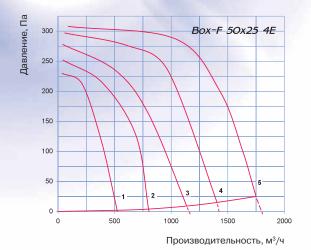
(приобретается отдельно).

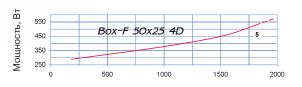

или кронштейнов.

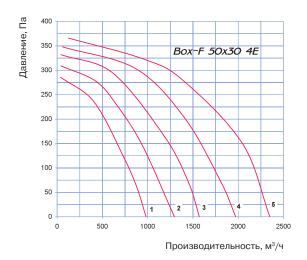

_	приточные и вытяжные системы вентиляции различных помещени	
	Для прямоугольных воздуховодов сечением от 400х200 до 1000х5	00 мм.
	Конструкция	□ Тепловая защита от перегрева осуществляется при помощи
	Корпус и рабочее колесо изготавливаются из оцинкованной	встроенных термоконтактов с выведенными клеммами для
СТа	али, стойкой к атмосферным воздействиям.	подключения внешних устройств защиты.
	Вентилятор рассчитан на продолжительную работу без	Выводы термоконтактов предназначены для подключения
OTI	ключения от сети.	в соответствующие цепи контактера, реле перегрузки или
CTa	Для крепления к прямоугольным воздуховодам оснащен андартными присоединительными фланцами шириной 20 мм.	определённым клеммам автотрансформаторного или тиристорног регулятора.
	В корпусе предусмотрена технологическая крышка для ревизии	Регулировка скорости
	ехнического обслуживания двигателя.	Плавная или ступенчатая регулировка при помощи
	Вентиляторы типоразмером от 40х20 до 60х35 оборудованы	тиристорного или автотрансформаторного регулятора
вс	троенным в корпус клеммной колодкой с выведенным	(приобретаются отдельно).
гер	омовводом для подключения питания.	
	Вентиляторы типоразмером от 70х40 до 100х50 оборудованы	■ Монтаж
вн	ешней клеммной коробкой для подключения питания.	□ Вентилятор предназначен для монтажа в прямоугольные канал
		и могут устанавливаться в любом положении.
	Двигатель	 На фланцах вентилятора предусмотрены отверстия
	4-х или 6-ти полюсный асинхронный двигатель с внешним	для крепежных болтов, которыми он напрямую крепится к
po.	тором и рабочим колесом с вперёд загнутыми лопатками.	воздуховодам.
	Вентилятор с такой турбиной отличается своими	□ Возможен монтаж с круглым каналом на выходном фланце

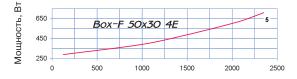


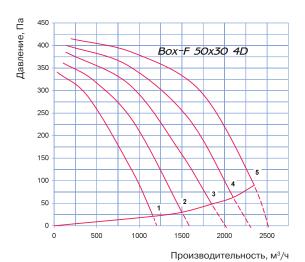

Параметры	Box-F 40x20 4E	Box-F 40x20 4D	Box-F 50x25 4E	Box-F 50x25 4D	Box-F 50x30 4E	Box-F 50x30 4D	Box-F 60x30 4E
Напряжение, В / 50 Гц	230	400	230	400	230	400	230
Потребляемая мощность, Вт	295	282	535	570	710	855	1240
Ток, А	1,32	0,60	2,49	0,94	3,10	1,70	6,45
Максимальный расход воздуха, м ³ /ч	1440	1470	1750	1850	2350	2350	2950
Частота вращения, мин ⁻¹	1350	1300	1250	1270	1230	1300	1210
Уровень звукового давления на расст. 3 м, dB(A)	50	52	53	54	57	56	59
Макс. темп. перемещаемого воздуха, °С	-25 +40	-25 +45	-20 +40	-20 +40	-25 +70	-20 +50	-25 +50
Защита	IP X4						

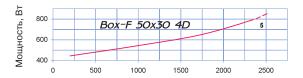

Параметры	Box-F 60x30 4D	Box-F 60x35 4E	Box-F 60x35 4D	Box-F 70x40 4D	Box-F 80x50 6D	Box-F 80x50 4D	Box-F 90x50 6D	Box-F 100x50 6D
Напряжение, В / 50 Гц	400	230	400	400	400	400	400	400
Потребляемая мощность, Вт	1560	2840	2460	3630	2790	5850	3870	3870
Ток, А	2,73	13,90	3,93	6,00	5,18	9,35	7,0	7,0
Максимальный расход воздуха, м ³ /ч	3740	4260	5020	6450	7610	8120	9540	9540
Частота вращения, мин ⁻¹	1310	1260	1300	1320	830	1140	930	930
Уровень звукового давления на расст. 3 м, dB(A)	57	59	60	65	59	67	61	61
Макс. темп. перемещаемого воздуха, °С	-25 +65	-20 +40	-20 +40	-25 +40	-20 +50	-25 +40	-20 +55	-20 +55
Защита	IP X4							

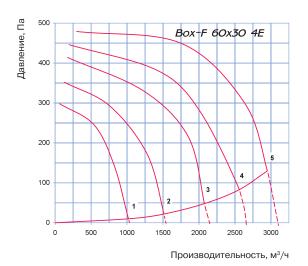


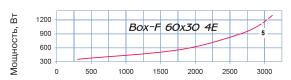


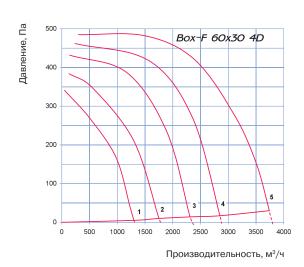


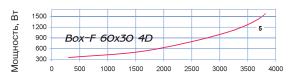


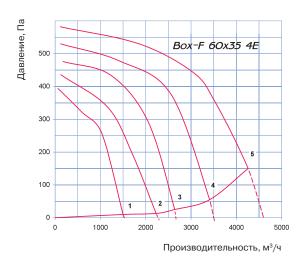


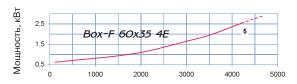


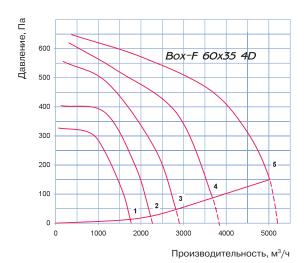


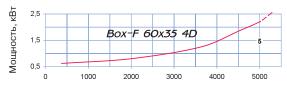


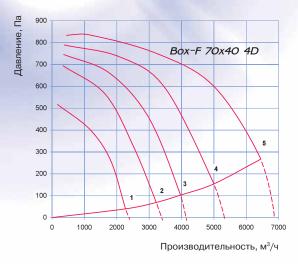


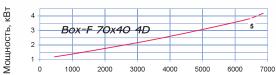


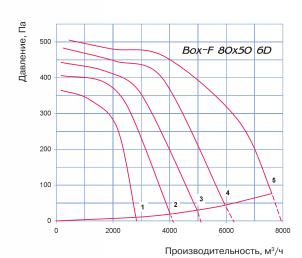


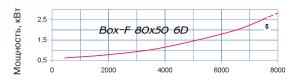


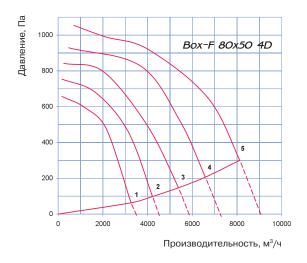


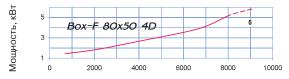


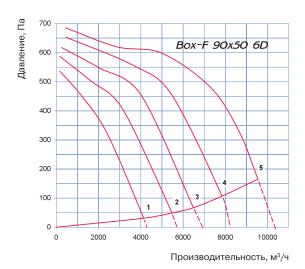


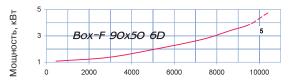


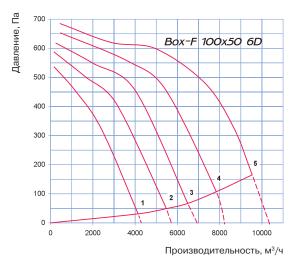


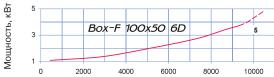


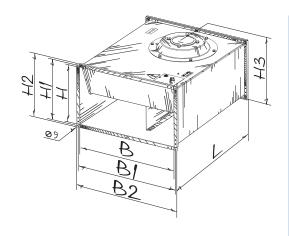








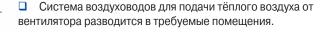




Габаритные размеры

Тип			F	Разме	ры, мм	1			Macca,
I VIII	В	B1	B2	Н	H1	H2	Н3	L	КГ
Box-F 40x20 4E	400	420	440	200	220	240	255	500	17,5
Box-F 40x20 4D	400	420	440	200	220	240	255	500	17,5
Box-F 50x25 4E	500	520	540	250	270	290	335	640	24,0
Box-F 50x25 4D	500	520	540	250	270	290	335	640	24,0
Box-F 50x30 4E	500	520	540	300	320	340	365	680	33,0
Box-F 50x30 4D	500	520	540	300	320	340	365	680	33,0
Box-F 60x30 4E	600	620	640	300	320	340	375	680	35,0
Box-F 60x30 4D	600	620	640	300	320	340	375	680	35,0
Box-F 60x35 4E	600	620	640	350	370	390	425	735	49,5
Box-F 60x35 4D	600	620	640	350	370	390	425	735	49,5
Box-F 70x40 4D	700	720	740	400	420	440	480	780	60,0
Box-F 80x50 6D	800	820	840	500	520	540	580	820	70,0
Box-F 80x50 4D	800	820	840	500	520	540	580	820	74,0
Box-F 90x50 6D	900	920	940	500	520	540	580	954	90,0
Box-F 100x50 6D	1000	1020	1040	500	520	540	580	954	95,0

Каминный центробежный вентилятор Kamin / Kamin-ER


Производительность — до 540 м³/ч

Применение

- Организация системы распределения теплого воздуха от камина по другим помещениям.
- □ Обогрев помещений с сезонным проживанием.
- Для перемещения воздуха температурой от 0 до 150 °С.
- □ Для монтажа с воздуховодами диаметром от 125 до 160 мм.

Конструкция

- □ Корпус и рабочее колесо изготавливаются из оцинкованной стали.
- □ Тепло- и звукоизоляция из негорючей минеральной ваты.
- Перфорация корпуса для внутренней циркуляции и охлаждения двигателя.
- □ На корпусе вентилятора предусмотрены специальные защёлки для присоединения дополнительных опций (фильтр, смесительная камера, система BY-PASS).
- Вентилятор оборудован внешней клеммной коробкой с выведенным гермовводом для подключения питания.
- □ Уровень температуры, при которой вентилятор будет включаться и выключаться, задается при помощи встроенного терморегулятора.

Опнии

□ **AF** – металлический фильтр-бокс для очистки распределяемого воздуха. Класс очистки – G3.

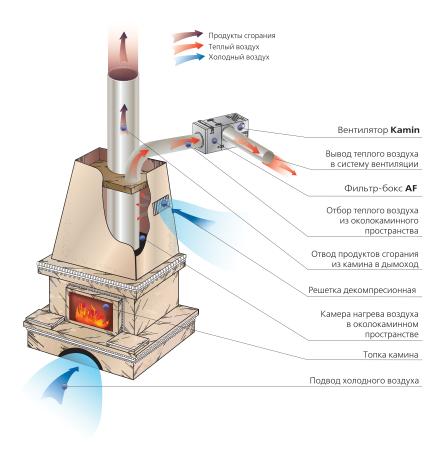
■ KF – металлическая смесительная камера для обеспечения подвода холодного воздуха. В камере установлен терморегулирующий клапан и фильтр для очистки воздуха. Камера обеспечивает подвод холодного воздуха при повышении температуры перемещаемого воздуха свыше 90°C и отвод горячего воздуха при неработающем вентиляторе.

□ **GF** – гравитационный клапан. Предотвращает обратный поток воздуха в системе. Вместе со смесительной камерой КF данный клапан обеспечивает защиту двигателя от перегрева (система BY-PASS). При неработающем двигателе (например, из-за отсутствия электричества) гравитационный клапан закрывается и через смесительную камеру обеспечивается отвод горячего воздуха по вентиляционным каналам в другие помещения. Когда в вентилятор поступает слишком горячий воздух (более 120°C), система BY-PASS стабилизирует температуру открытием заслонки смесительной камеры и подачей холодного воздуха.

Двигатель

- □ Однофазный асинхронный двигатель с центробежным рабочим колесом с вперёд загнутыми лопатками.
- □ Вентилятор серии Kamin-ER оборудован двигателем с внешним ротором
- ☐ Двигатель расположен вне потока воздуха и оборудован дополнительной осевой крыльчаткой для охлаждения и обдува.
- Класс изоляции двигателя F.
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Турбина динамически сбалансирована.
- □ Тепловая защита от перегрева осуществляется при помощи встроенных термоконтактов с автоматическим перезапуском.

Регулировка скорости


Плавная или ступенчатая регулировка при помощи тиристорного или автотрансформаторного регулятора (приобретаются отдельно).

Монтаж

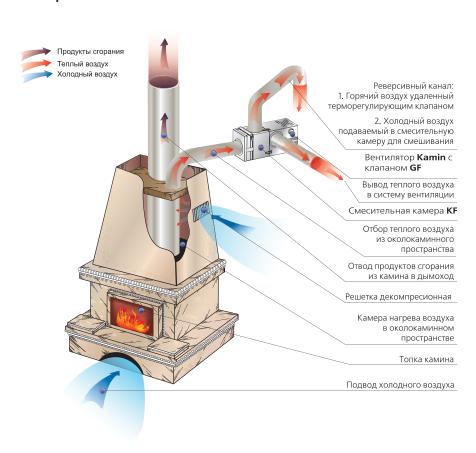
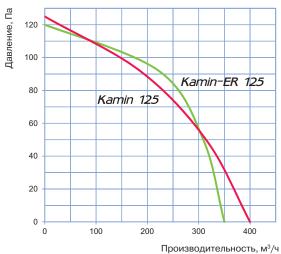
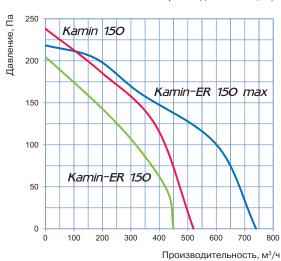
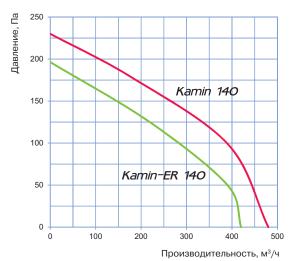
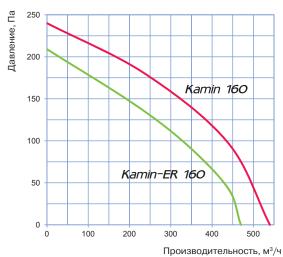

□ Вентилятор предназначен для монтажа с круглыми каналами и может устанавливаться в любом положении с учётом потока воздуха.

Схема работы вентилятора Kamin с фильтр-боксом AF

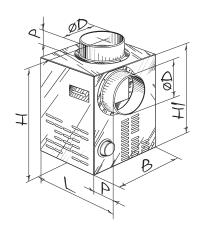


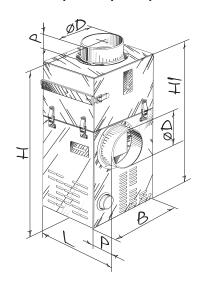

Схема работы вентилятора Kamin с системой BY-PASS



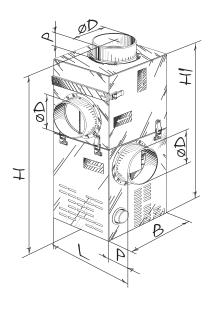

Параметры	Kamin 125	Kamin 140	Kamin 150	Kamin 160
Напряжение, В / 50 Гц	1~ 230	1~ 230	1~ 230	1~ 230
Потребляемая мощность, Вт	108	110	115	116
Ток, А	0,81	0,82	0,84	0,86
Максимальный расход воздуха, м ³ /ч	400	480	520	540
Частота вращения, мин ⁻¹	1300	1290	1280	1270
Уровень звукового давления на расст. 3 м, dB(A)	42	42	42	42
Макс. темп. перемещаемого воздуха, °C	150	150	150	150
Защита	IP X2	IP X2	IP X2	IP X2

Параметры	Kamin-ER 125	Kamin-ER 140	Kamin-ER 150	Kamin-ER 150 max	Kamin-ER 160
Напряжение, В / 50 Гц	1~ 230	1~ 230	1~ 230	1~ 230	1~ 230
Потребляемая мощность, Вт	32	41	43	127	44
Ток, А	0,14	0,18	0,19	0,55	0,19
Максимальный расход воздуха, м ³ /ч	350	420	450	740	470
Частота вращения, мин ⁻¹	1335	1250	1165	1310	1110
Уровень звукового давления на расст. 3 м, dB(A)	37	38	39	45	39
Макс. темп. перемещаемого воздуха, °C	150	150	150	150	150
Защита	IP X2	IP X2	IP X2	IP X2	IP X2





■ Габаритные размеры вентилятора Kamin / Kamin-ER ______


Тип			Разме	ры, мм			Macca,
IVIII	ØD	В	Н	H1	L	Р	КГ
Kamin 125	124	245	350	300	260	50	4,5
Kamin 140	139	285	350	300	300	50	5,7
Kamin 150	149	285	350	300	300	50	5,7
Kamin 160	159	285	350	300	300	50	5,7
Kamin-ER 125	124	245	320	270	260	50	5,6
Kamin-ER 140	139	285	320	270	300	50	6,8
Kamin-ER 150	149	285	320	270	300	50	6,8
Kamin-ER 150 max	149	285	320	270	300	50	6,8
Kamin-ER 160	159	285	320	270	300	50	6,8

■ Габаритные размеры вентилятора Kamin / Kamin-ER с фильтр-боксом AF ______

Дополнительная		F	Разме	ры, мі	М		Масса,	
опция	ØD	В	Н	H1	L	Р	КГ	
AF 125	124	245	530	480	260	50	6,7	
AF 140	139	285	540	490	300	50	8,7	
AF 150	149	285	540	490	300	50	8,7	
AF 160	159	285	540	490	300	50	8,7	
AF 125	124	245	500	450	260	50	7,8	
AF 140	139	285	510	460	300	50	9,8	
AF 150	149	285	510	460	300	50	9,8	
AF 150	149	285	510	460	300	50	9,8	
AF 160	159	285	510	460	300	50	9,8	
	опция AF 125 AF 140 AF 150 AF 160 AF 125 AF 140 AF 150 AF 150	ОПЦИЯ ØD AF 125 124 AF 140 139 AF 150 149 AF 160 159 AF 125 124 AF 140 139 AF 150 149 AF 150 149	ОПЦИЯ	ОПЦИЯ ØD B H AF 125 124 245 530 AF 140 139 285 540 AF 150 149 285 540 AF 160 159 285 540 AF 125 124 245 500 AF 140 139 285 510 AF 150 149 285 510 AF 150 149 285 510	ОПЦИЯ ØD B H H1 AF 125 124 245 530 480 AF 140 139 285 540 490 AF 150 149 285 540 490 AF 160 159 285 540 490 AF 125 124 245 500 450 AF 140 139 285 510 460 AF 150 149 285 510 460 AF 150 149 285 510 460	ОПЦИЯ ØD B H H1 L AF 125 124 245 530 480 260 AF 140 139 285 540 490 300 AF 150 149 285 540 490 300 AF 160 159 285 540 490 300 AF 125 124 245 500 450 260 AF 140 139 285 510 460 300 AF 150 149 285 510 460 300 AF 150 149 285 510 460 300	ОПЦИЯ ØD B H H1 L Р AF 125 124 245 530 480 260 50 AF 140 139 285 540 490 300 50 AF 150 149 285 540 490 300 50 AF 160 159 285 540 490 300 50 AF 125 124 245 500 450 260 50 AF 140 139 285 510 460 300 50 AF 150 149 285 510 460 300 50 AF 150 149 285 510 460 300 50	

■ Габаритные размеры вентилятора Kamin / Kamin-ER со смесительной камерой КF и клапаном GF ______

Тип	Дополнительная		Р	азме	ры, мі	М		Macca,
IVIII	опция	ØD	В	Н	H1	L	Р	КГ
Kamin 125	KF 125 / KF 125 + GF 125 (BY-PASS)	124	245	610	560	260	50	8,3
Kamin 140	KF / KF 140 + GF 140 (BY-PASS)	139	285	650	600	300	50	9,7
Kamin 150	KF 150 / KF 150 + GF 150 (BY-PASS)	149	285	650	600	300	50	9,7
Kamin 160	KF 160 / KF 160 + GF 160 (BY-PASS)	159	285	650	600	300	50	9,7
Kamin-ER 125	KF 125 / KF 125 + GF 125 (BY-PASS)	124	245	580	530	260	50	9,4
Kamin-ER 140	KF / KF 140 + GF 140 (BY-PASS)	139	285	620	570	300	50	10,8
Kamin-ER 150	KF 150 / KF 150 + GF 150 (BY-PASS)	149	285	620	570	300	50	10,8
Kamin-ER 150 max	KF 150 / KF 150 + GF 150 (BY-PASS)	149	285	620	570	300	50	10,8
Kamin-ER 160	KF 160 / KF 160 + GF 160 (BY-PASS)	159	285	620	570	300	50	10,8

Вытяжной центробежный модуль для одноканальной системы вентиляции

Valeo

Производительность — до 150 м³/ч

Применение

- Вытяжные системы вентиляции многоэтажных жилых и общественных зданий.
- Здания с однотрубной системой вентиляции.
- □ Установка в кухнях, ванных комнатах или санузлах.
- Для монтажа в корпуса для скрытого или открытого монтажа.

Конструкция

- □ Вентиляторный модуль Valeo предназначен для установки в пластиковый или противопожарный корпус.
- Лицевая панель выполнена из качественного АБС пластика, стойкого к ультрафиолету.
- □ Комплектуется очищающим фильтром длительного использования для защиты двигателя, крыльчатки и сборного воздуховода от попадания загрязняющих веществ.
- □ Обеспечен легкий доступ для обслуживания фильтра. Фильтр имеет степень очистки G4.
- Вентиляторный модуль просто фиксируется в корпусе при помощи специальных защёлок.
- □ Благодаря современному дизайну и различным цветовым исполнениям лицевая панель подходит к любому интерьеру.

Двигатель

Экономичный 2-х или 3-х скоростной центробежный двигатель с минимальным энергопотреблением.

- □ При изменении сопротивления вентиляционной системы вентилятор самостоятельно поддерживает постоянный расход воздуха в канале.
- □ Рабочее колесо выполнено из оцинкованной стали и имеет вперёд загнутые лопатки.
- ☐ Сбалансированная турбина обеспечивает бесшумную работу при работе вентилятора.
- ☐ Специальная форма улитки позволяет достигает наилучших аэродинамических характеристик.
- □ Большой срок эксплуатации благодаря подшипникам качения.

Управление

- □ Ступенчатое переключение скоростей осуществляется при помощи внешнего переключателя (например, модель CDP-3/5 приобретается отдельно).
- □ Большой выбор интеллектуальных систем управления вентиляцией по заданным параметрам (таймер, регулируемый таймер, интервальный переключатель, датчик света, датчик влажности).

Описание работы опций (для 2-х скоростных моделей)

Таймер (Valeo...Т)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости.

При включении внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения вентилятор продолжает работать на 2-ой скорости в течении 6 минут, после чего самостоятельно возвращается в исходное состояние.

Регулируемый таймер (Valeo...TR)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении внешним выключателем вентилятор переходит на 2-ю скорость с регулируемой задержкой от 0 до 150 секунд. После выключения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора и задержка включения 2-ой скорости устанавливается встроенным регулятором.

Интервальный переключатель (Valeo...I)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. В регулируемом интервале времени от 0,5 до 15 часов вентилятор работает с периодическими включениями 2-ой скорости. Время работы на 2-ой скорости – 10 минут. Интервал между включениями устанавливается внутренним

регулятором. При включении освещения внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать в интервальном режиме.

■ Фотодатчик (Valeo...F)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении освещения в помещении вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора на 2-ой скорости устанавливается встроенным регулятором.

□ Датчик влажности (Valeo...H)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. Вентилятор включается на 2-ю скорость при повышении уровня относительной влажности в помещении, устанавливаемой в пределах от 60% до 90%. Выключается при снижении установленной относительной влажности на 10%. Вентилятор может быть включен на 2-ю скорость принудительно выключателем вместе с освещением, при этом задержка включения составляет 50 секунд, а время работы устанавливается внутренним регулятором от 2 до 30 минут.

Варианты исполнения сменных лицевых панелей

Входящая в стандартную комплектацию белоснежная лицевая панель может быть заменена на любую из ниже представленных.

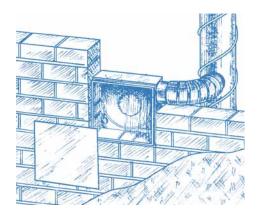
Platinum серый металлик

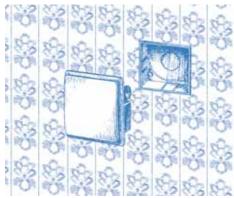
Hi-tech натуральный шлифованный алюминий

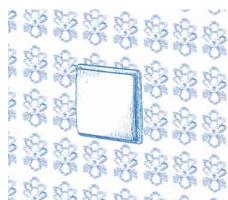
Hi-tech Gold натуральный алюминий под золото

Hi-tech Chrome натуральный зеркальный алюминий

Монтажный пластиковый корпус для вентиляторного модулей Valeo _



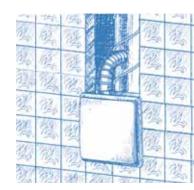

- ВР 80 пластиковый корпус для скрытого монтажа.
- Выполнен из качественного АБС пластика и оборудован герметичным обратным клапаном гравитационного действия.
- ☐ Устанавливается в стену или потолок во время общестроительных работ при помощи монтажных кронштейнов, поставляемых в комплекте.
- □ Для облегчения установки корпуса в строго вертикальном положении предусмотрены продолговатые шлицы креплений.
- □ Подключается к главному вентиляционному стояку при помощи гибких воздуховодов.
- Диаметр выходного патрубка 80 мм.
- □ После установки закрывается защитной крышкой, предотвращающей загрязнение.
- ☐ При завершении отделочных работ в помещении в корпус устанавливается вентиляторный модуль Valeo.
- □ В корпусе предусмотрена возможность подключения дополнительных патрубков для вытяжки воздуха из второго помещения. Для подключения дополнительного патрубка необходимо удалить заглушку в корпусе.

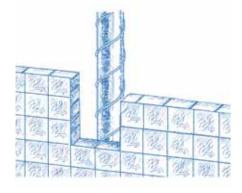


обратный клапан

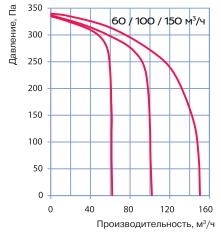
Монтажный противопожарный корпус для вентиляторных модулей Valeo

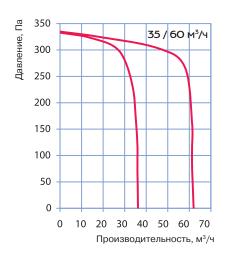
- BF 80 противопожарный корпус для скрытого монтажа.
- Выполнен из силикатных плит и обладает высокими механическими и теплоизоляционными свойствами.
- □ Оборудован огнезадерживающим клапаном для предотвращения распространения огня и дыма по воздуховодам. При повышении температуры воздуха в шахте до 90°C срабатывает плавкая вставка и клапан автоматически закрывается.
- □ При выключенном вентиляторе огнезадерживающий клапан выполняет роль герметичного обратного клапана.
- □ Корпус устанавливается в стену или потолок во время общестроительных работ при помощи монтажных кронштейнов, поставляемых в комплекте.
- □ Подключается к главному вентиляционному стояку при помощи гибких воздуховодов. Диаметр патрубка 80 мм.
- □ Питание вентилятора выводится через специальный гермоввод на корпусе.
- □ После установки корпус закрывается защитной крышкой, предотвращающей попадание пыли и грязи.
- □ При завершении отделочных работ в помещении в корпус устанавливается вентиляторный модуль и подключается к заранее выведенной проводке.
- ☐ Для возможности вентиляции второго помещения предусмотрены исполнения корпусов с дополнительными патрубками: **BFL** слева; **BFR** справа, **BFD** снизу.




BFL 80

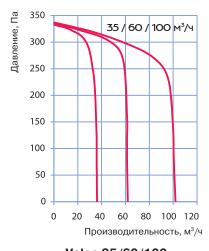
BFR 80

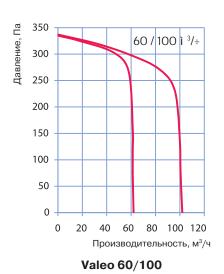




Параметры	Valeo 60/100/150	Valeo 35/60	Valeo 35/100	Valeo 35/60/100	Valeo 60/100
Количество скоростей	3	2	2	3	2
Напряжение, В (50 Гц)	220-240	220-240	220-240	220-240	220-240
Потребляемая мощность, Вт	17/27/48	12/17	12/27	12/17/27	17/27
Ток, А	0,14/0,18/0,21	0,12/0,14	0,12/0,18	0,12/0,14/0,18	0,14/0,18
Подключение к сети, мм ²	4x1,5	3x1,5	3x1,5	4x1,5	3x1,5
Макс. расход воздуха, м ³ /ч	63/102/150	35/63	35/102	35/63/102	63/102
Частота вращения, мин ⁻¹	1350/1830/2640	890/1350	890/1830	890/1350/1830	1350/1830
Уровень звукового давления на расст. Зм, dB(A)	30/35,2/43,7	26,6/30	26,6/35,2	26,6/30/35,2	30/35,2
Макс. температура перемещаемого воздуха, °С	50	50	50	50	50

Аэродинамические характеристики

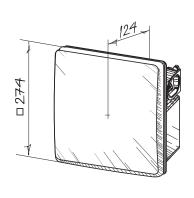


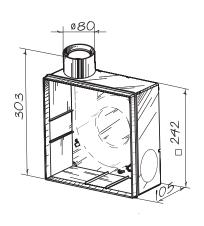


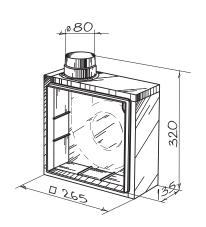
Valeo 60/100/150

Valeo 35/60

Valeo 35/100

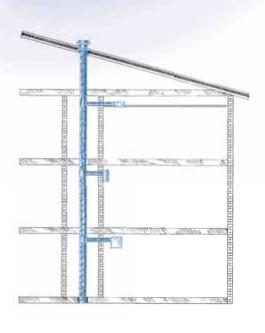


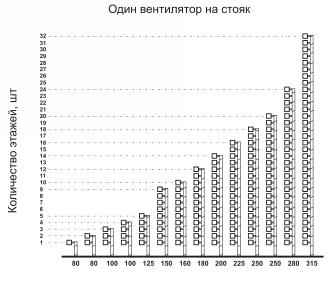



Valeo 35/60/100

- □ Крутая характеристика отражает высокий потенциал вентиляторов Valeo по давлению при сохранении постоянного расхода воздуха, что позволяет применять несколько вентиляторов в одной вентиляционной шахте.
- при 35 м³/ч располагаемое давление до 270 Па
- при $60~\text{м}^3/\text{ч}$ располагаемое давление до 260~Пa
- при 100 м³/ч располагаемое давление до 220 Па

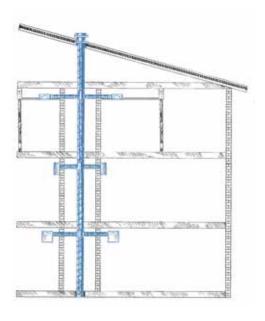
Габаритные размеры




Расчет диаметра главного канала для одноканальных систем вентиляции

□ На диаграммах, показанных ниже, приведена зависимость размера вентиляционного канала от количества этажей в многоэтажных домах с одноканальной системой вентиляции.

60 м³/ч Вентиляция ванных комнат или туалетов

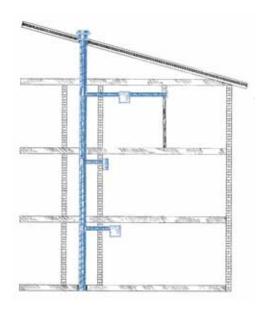


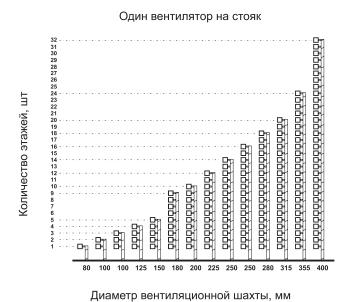
☐ Устанавливается один вентилятор на этаж при расчётном объёмном расходе воздуха 60 м³/ч и при их одновременном использовании.

Диаметр вентиляционной шахты, мм

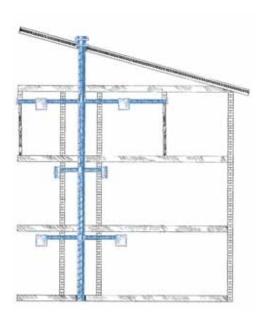
60 м³/ч

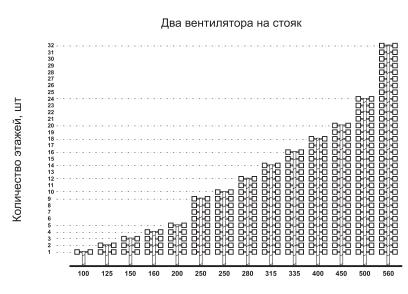
□ Устанавливается два вентилятора на этаж при расчётном объёмном расходе воздуха 60 м³/ч и при их одновременном использовании.


Диаметр вентиляционной шахты, мм


Расчет диаметра главного канала для одноканальных систем вентиляции

□ На диаграммах, показанных ниже, приведена зависимость размера вентиляционного канала от количества этажей в многоэтажных домах с одноканальной системой вентиляции.


100 м³/ч Вентиляция кухонь или одновременная вентиляция двух помещений


- ☐ Устанавливается один вентилятор на этаж при расчётном объёмном расходе воздуха для кухни 100 м³/ч и при их одновременном использовании.
- При вентиляции двух помещений одновременно: ванная комната 60 м 3 /ч, туалет 40 м 3 /ч.

100 м³/ч

- ☐ Устанавливается два вентилятор на этаж при расчётном объёмном расходе воздуха для кухни 100 м³/ч и при их одновременном использовании.
- □ При вентиляции двух помещений одновременно: ванная комната 60 м³/ч, туалет 40 м³/ч.

Диаметр вентиляционной шахты, мм

Вытяжной центробежный вентилятор для одноканальной системы вентиляции

Valeo-BP

Производительность — до $150 \,\mathrm{M}^3/\mathrm{4}$

Применение

- □ Вытяжные системы вентиляции многоэтажных жилых и общественных зданий.
- Здания с однотрубной системой вентиляции.
- □ Установка в кухнях, ванных комнатах или санузлах.
- Для скрытого монтажа в стене или потолке.

Конструкция

- □ Вентилятор состоит из пластикового корпуса ВР для скрытого монтажа и вентиляторного вытяжного модуля Valeo с плоской лицевой панелью.
- □ Корпус изготавливается из высокопрочного АБС пластика и оборудован герметичным клапаном гравитационного действия для предотвращения обратного потока.

- □ Лицевая панель вентилятора выполнены из белоснежного пластика, стойкого к ультрафиолету.
- □ Вентилятор комплектуется очищающим фильтром длительного использования для защиты двигателя, крыльчатки и сборного воздуховода от попадания загрязняющих веществ.
- □ Обеспечен легкий доступ для обслуживания фильтра. Фильтр имеет степень очистки G4.
- □ Благодаря современному дизайну и различным цветовым исполнениям лицевая панель подходит к любому интерьеру.
- Для облегчения установки корпуса в строго вертикальном положении предусмотрены продолговатые шлицы креплений.
- □ Если корпус установлен с отклонением от вертикали, то специальная поворотная конструкция решётки позволяет скрыть неровности установки.
- Для подвода питания к вентилятору в его корпусе предусмотрен специальный гермоввод, а на вентиляторном модуле герметичная клеммная коробка для подключения выведенной проводки.
- □ В корпусе предусмотрена возможность подключения дополнительных патрубков для вытяжки воздуха со второго помещения.
- Степень защиты IP55.

Двигатель

- ☐ Экономичный 2-х или 3-х скоростной центробежный двигатель с минимальным энергопотреблением.
- □ При изменении сопротивления вентиляционной системы вентилятор самостоятельно поддерживает постоянный расход воздуха в канале.
- □ Рабочее колесо выполнено из оцинкованной стали и имеет вперёд загнутые лопатки.
- □ Сбалансированная турбина обеспечивает бесшумную работу при работе вентилятора.
- □ Специальная форма улитки позволяет достигает наилучших аэродинамических характеристик.
- □ Большой срок эксплуатации благодаря подшипникам качения.
- Вентиляторный модуль с двигателем легко фиксируется в корпусе вентилятора при помощи специальных защёлок.

Управление

- □ Ступенчатое переключение скоростей осуществляется при помощи внешнего переключателя (например, модель CDP-3/5 приобретается отдельно).
- □ Большой выбор интеллектуальных систем управления вентиляцией по заданным параметрам (таймер, регулируемый таймер, интервальный переключатель, датчик света, датчик влажности).

Монтаж

- □ Корпус вентилятора устанавливается в стену или потолок во время общестроительных работ при помощи монтажных кронштейнов поставляемых в комплекте.
- Подключается к главному вентиляционному стояку при помощи гибких воздуховодов.
- ☐ Для вытяжки воздуха из второго помещения необходимо удалить заглушку в корпусе и установить дополнительный патрубок (поставляется отдельно).
- □ Диаметр патрубка 80 мм.
- Питание вентилятора выводится через специальный гермоввод на корпусе.
- □ После установки корпус закрывается защитной крышкой предотвращающей попадание пыли и грязи.
- □ При завершении отделочных работ в помещении в корпус устанавливается вентиляторный модуль и подключается к заранее выведенной проводке.

Описание работы опций (для 2-х скоростных моделей)

■ Таймер (Valeo-ВР...Т)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости.

При включении внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения вентилятор продолжает работать на 2-ой скорости в течении 6 минут, после чего самостоятельно возвращается в исходное состояние.

■ Регулируемый таймер (Valeo-BP...TR)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении внешним выключателем вентилятор переходит на 2-ю скорость с регулируемой задержкой от 0 до 150 секунд. После выключения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора и задержка включения 2-ой скорости устанавливается встроенным регулятором.

Интервальный переключатель (Valeo-BP...I)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. В регулируемом интервале времени от 0,5 до 15 часов вентилятор работает с периодическими включениями 2-ой скорости. Время работы на 2-ой скорости – 10 минут. Интервал между включениями устанавливается внутренним

регулятором. При включении освещения внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать в интервальном режиме.

■ Фотодатчик (Valeo-BP...F)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении освещения в помещении вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора на 2-ой скорости устанавливается встроенным регулятором.

■ Датчик влажности (Valeo-BP...H)

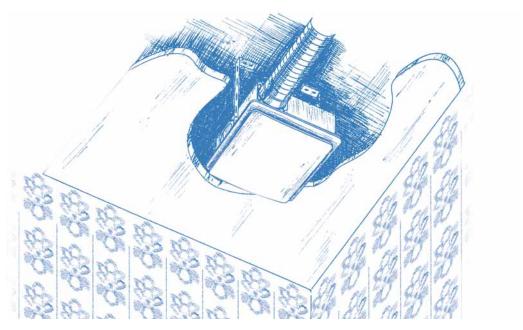
В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. Вентилятор включается на 2-ю скорость при повышении уровня относительной влажности в помещении, устанавливаемой в пределах от 60% до 90%. Выключается при снижении установленной относительной влажности на 10%. Вентилятор может быть включен на 2-ю скорость принудительно выключателем вместе с освещением, при этом задержка включения составляет 50 секунд, а время работы устанавливается внутренним регулятором от 2 до 30 минут.

Варианты исполнения сменных лицевых панелей

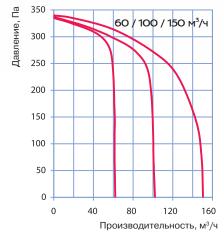
🔲 Входящая в стандартную комплектацию белоснежная лицевая панель может быть заменена на любую из ниже представленных.

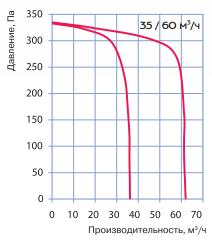
Platinum серый металлик

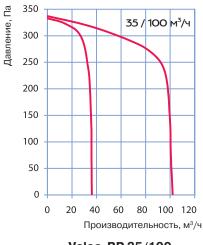
Hi-tech натуральный шлифованный алюминий

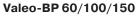


Hi-tech Gold натуральный алюминий под золото




Hi-tech Chrome натуральный зеркальный алюминий


Пример установки

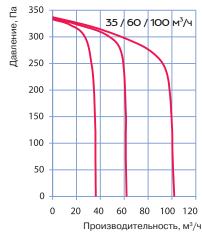


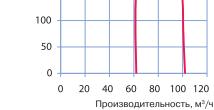
Параметры	Valeo-BP 60/100/150	Valeo-BP 35/60	Valeo-BP 35/100	Valeo-BP 35/60/100	Valeo-BP 60/100
Количество скоростей	3	2	2	3	2
Напряжение, В (50 Гц)	220-240	220-240	220-240	220-240	220-240
Потребляемая мощность, Вт	17/27/48	12/17	12/27	12/17/27	17/27
Ток, А	0,14/0,18/0,21	0,12/0,14	0,12/0,18	0,12/0,14/0,18	0,14/0,18
Подключение к сети, мм ²	4x1,5	3x1,5	3x1,5	4x1,5	3x1,5
Макс. расход воздуха, м ³ /ч	63/102/150	35/63	35/102	35/63/102	63/102
Частота вращения, мин ⁻¹	1350/1830/2640	890/1350	890/1830	890/1350/1830	1350/1830
Уровень звукового давления на расст. Зм, дБА	30/35,2/43,7	26,6/30	26,6/35,2	26,6/30/35,2	30/35,2
Макс. температура перемещаемого воздуха, °С	50	50	50	50	50

Valeo-BP 35/60

350

300


250


200

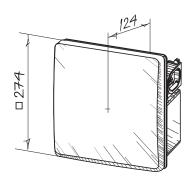
150

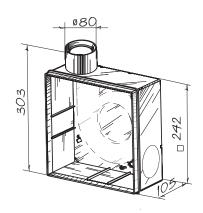
Давление,

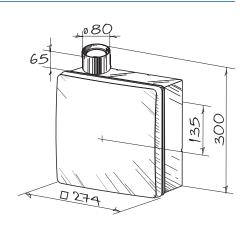
Valeo-BP 35/100

Valeo-BP 35/60/100

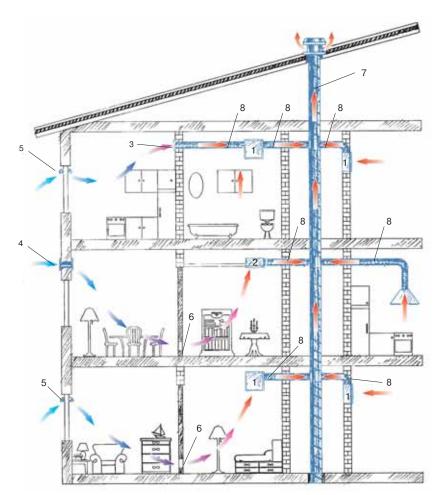
Valeo-BP 60/100


60 / 100 ì ³/÷


□ Высокий потенциал вентиляторов Valeo-ВР по давлению при сохранении постоянного расхода воздуха позволяет применять несколько вентиляторов в одной вентиляционной шахте.


- при 35 м³/ч располагаемое давление до 270 Па
- при 60 м³/ч располагаемое давление до 260 Па
- при 100 м³/ч располагаемое давление до 220 Па

Габаритные размеры



Пример организации одноканальной системы вентиляции в многоэтажном доме

- □ В многоэтажных жилых зданиях проектируется система вытяжной механической вентиляции кухни, ванной комнаты и туалета на базе вытяжных вентиляторов Valeo-BP.
- Приток чистого и свежего воздуха в спальни, детские или гостинные обеспечивается за счёт оконных или стенных проветривателей. Проветриватели могут оснащаться функцией регулирования объёмного притока воздуха.
- Через внутриквартирные двери или дверные решётки загрязнённый воздух из квартиры вытягивается вытяжными вентиляторами в ванной, кухне или туалете.
- □ Такая система вентиляции обеспечивает постоянную контролируемую циркуляцию воздуха в помещении и комфортный микроклимат для жильцов.

- 1. Вытяжной вентилятор **Valeo-BP** с дополнительным патрубком для вентиляции второго помещения.
- 2. Вытяжной вентилятор Valeo-BP.
- 3. Настенная решётка BLAUBERG серии **DECOR**.
- 4. Стенной проветриватель BLAUBERG серии WHM.
- 5. Оконный проветриватель BLAUBERG серии FHM.
- **6.** Дверные вентиляционные решётки BLAUBERG серии **DECOR.**
- 7. Центральный вентиляционный канал.
- **8.** Гибкие воздуховоды для подключения вытяжных вентиляторов к центральному каналу (например, воздуховоды BLAUBERG серии **BlauFlex.**

Вытяжной центробежный вентилятор для одноканальной системы вентиляции

Valeo-BF

Производительность — до $150 \,\mathrm{M}^3/\mathrm{4}$

Полага		
Прии	іене	ние

- 📮 Вытяжные системы вентиляции многоэтажных жилых и общественных зданий с повышенными требованиями к пожаробезопасности.
- Здания с однотрубной системой вентиляции.
- □ Установка в кухнях, ванных комнатах, санузлах и других бытовых помещениях.
- □ Для скрытого монтажа в стене или потолке.

Конструкция

- □ Вентилятор состоит из противопожарного корпуса ВF для скрытого монтажа и вентиляторного вытяжного модуля Valeo с плоской лицевой панелью.
- □ Корпус изготавливается из силикатных плит и обладает высокими механическими и теплоизоляционными свойствами.
- □ Оборудован огнезадерживающим клапаном для предотвращения распространения огня и дыма по воздуховодам. При повышении температуры воздуха в шахте до 90°С срабатывает плавкая вставка и капан автоматически закрывается.

- При выключенном вентиляторе огнезадерживающий клапан выполняет роль герметичного обратного клапана.
- Лицевая панель вентилятора выполнены из белоснежного пластика, стойкого к ультрафиолету.
- □ Вентилятор комплектуется очищающим фильтром длительного использования для защиты двигателя, крыльчатки и сборного воздуховода от попадания загрязняющих веществ.
- □ Обеспечен легкий доступ для обслуживания фильтра. Фильтр имеет степень очистки G4.
- □ Благодаря современному дизайну и различным цветовым исполнениям лицевая панель подходит к любому интерьеру.
- □ Для облегчения установки корпуса в строго вертикальном положении предусмотрены продолговатые шлицы креплений.
- □ Если корпус установлен с отклонением от вертикали, то специальная поворотная конструкция решётки позволяет скрыть неровности установки.
- Для подвода питания к вентилятору в его корпусе предусмотрен специальный гермоввод, а на вентиляторном модуле герметичная клеммная коробка для подключения выведенной проводки.
- □ Для возможности вентиляции второго помещения предусмотрены модификации вентиляторов с дополнительными патрубками: Valeo-BFL – слева; Valeo-BFR – справа; Valeo-BFD – снизу.
- Степень защиты IP55.

Двигатель

- Экономичный 2-х или 3-х скоростной центробежный двигатель с минимальным энергопотреблением.
- □ При изменении сопротивления вентиляционной системы вентилятор самостоятельно поддерживает постоянный расход воздуха в канале.
- □ Рабочее колесо выполнено из оцинкованной стали и имеет вперёд загнутые лопатки.
- □ Сбалансированная турбина обеспечивает бесшумную работу при работе вентилятора.
- □ Специальная форма улитки позволяет достигает наилучших аэродинамических характеристик.
- □ Большой срок эксплуатации благодаря подшипникам качения.
- □ Вентиляторный модуль с двигателем легко фиксируется в корпусе вентилятора при помощи специальных защёлок.

Управление

- □ Ступенчатое переключение скоростей осуществляется при помощи внешнего переключателя (например, модель CDP-3/5 приобретается отдельно).
- □ Большой выбор интеллектуальных систем управления вентиляцией по заданным параметрам (таймер, регулируемый таймер, интервальный переключатель, датчик света, датчик влажности).

Монтаж

- □ Корпус вентилятора устанавливается в стену или потолок во время общестроительных работ при помощи монтажных кронштейнов поставляемых в комплекте.
- □ Подключается к главному вентиляционному стояку при помощи гибких воздуховодов.
- Диаметр патрубка 80 мм.
- □ Питание вентилятора выводится через специальные гермовводы на корпусе.
- После установки корпус закрывается защитной крышкой предотвращающей попадание пыли и грязи.
- При завершении отделочных работ в помещении в корпус устанавливается вентиляторный модуль и подключается к заранее выведенной проводке.

Описание работы опций (для 2-х скоростных моделей)

■ Таймер (Valeo-BF…T)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости.

При включении внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения вентилятор продолжает работать на 2-ой скорости в течении 6 минут, после чего самостоятельно возвращается в исходное состояние.

■ Регулируемый таймер (Valeo-BF...TR)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении внешним выключателем вентилятор переходит на 2-ю скорость с регулируемой задержкой от 0 до 150 секунд. После выключения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора и задержка включения 2-ой скорости устанавливается встроенным регулятором.

Интервальный переключатель (Valeo-BF...I)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. В регулируемом интервале времени от 0,5 до 15 часов вентилятор работает с периодическими включениями 2-ой скорости. Время работы на 2-ой скорости – 10 минут. Интервал между включениями устанавливается внутренним

регулятором. При включении освещения внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать в интервальном режиме.

Фотодатчик (Valeo-BF...F)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении освещения в помещении вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора на 2-ой скорости устанавливается встроенным регулятором.

■ Датчик влажности (Valeo-BF...H)

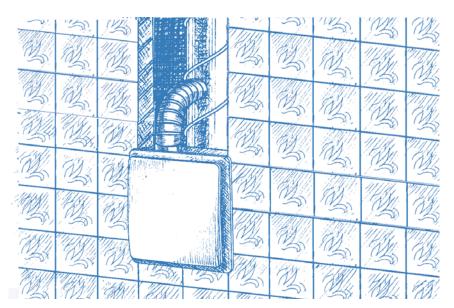
В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. Вентилятор включается на 2-ю скорость при повышении уровня относительной влажности в помещении, устанавливаемой в пределах от 60% до 90%. Выключается при снижении установленной относительной влажности на 10%. Вентилятор может быть включен на 2-ю скорость принудительно выключателем вместе с освещением, при этом задержка включения составляет 50 секунд, а время работы устанавливается внутренним регулятором от 2 до 30 минут.

Варианты исполнения сменных лицевых панелей

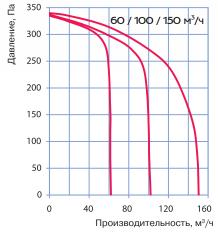
🔲 Входящая в стандартную комплектацию белоснежная лицевая панель может быть заменена на любую из ниже представленных.

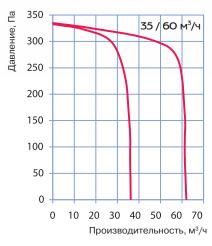
Platinum серый металлик

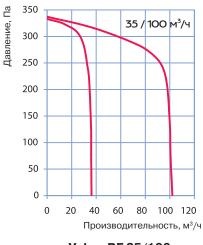
Hi-tech натуральный шлифованный алюминий



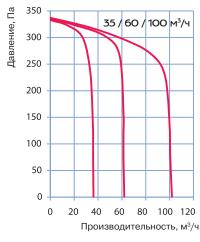
Hi-tech Gold натуральный алюминий под золото

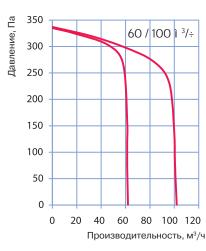



Hi-tech Chrome натуральный зеркальный алюминий


Пример установки

Параметры	Valeo-BF 60/100/150	Valeo-BF 35/60	Valeo-BF 35/100	Valeo-BF 35/60/100	Valeo-BF 60/100
Количество скоростей	3	2	2	3	2
Напряжение, В (50 Гц)	220-240	220-240	220-240	220-240	220-240
Потребляемая мощность, Вт	17/27/48	12/17	12/27	12/17/27	17/27
Ток, А	0,14/0,18/0,21	0,12/0,14	0,12/0,18	0,12/0,14/0,18	0,14/0,18
Подключение к сети, мм²	4x1,5	3x1,5	3x1,5	4x1,5	3x1,5
Макс. расход воздуха, м ³ /ч	63/102/150	35/63	35/102	35/63/102	63/102
Частота вращения, мин ⁻¹	1350/1830/2640	890/1350	890/1830	890/1350/1830	1350/1830
Уровень звукового давления на расст. 3м, dB(A)	30/35,2/43,7	26,6/30	26,6/35,2	26,6/30/35,2	30/35,2
Макс. температура перемещаемого воздуха, °С	50	50	50	50	50

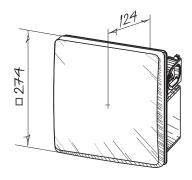


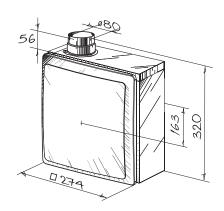


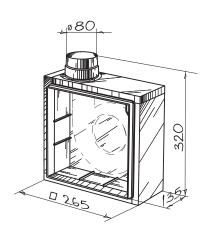
Valeo-BF 60/100/150

Valeo-BF 35/60

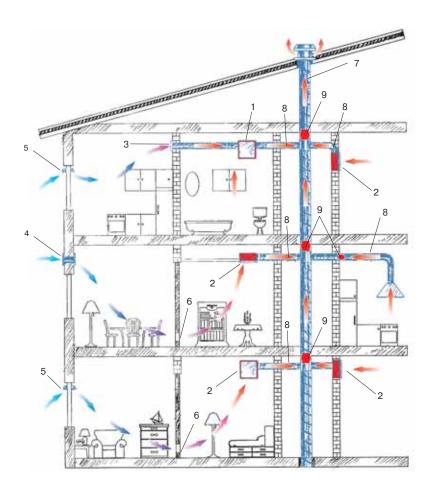
Valeo-BF 35/100




Valeo-BF 35/60/100 Valeo-BF 60/100


- □ Высокий потенциал вентиляторов Valeo-BF по давлению при сохранении постоянного расхода воздуха позволяет применять несколько вентиляторов в одной вентиляционной шахте.
- при 35 м³/ч располагаемое давление до 270 Па
- при 60 м³/ч располагаемое давление до 260 Па
- при 100 м³/ч располагаемое давление до 220 Па

Габаритные размеры



Пример организации одноканальной системы вентиляции в многоэтажном доме

- В многоэтажных жилых зданиях с повышенными требованиями к пожарной безопасности проектируется система вытяжной механической вентиляции кухни, ванной комнаты и туалета на базе вытяжных вентиляторов Valeo-BF в противопожарном корпусе с огнезадерживающим клапаном. В сборном воздуховоде между стояками устанавливаются межэтажные противопожарные преграды для предупреждения распространения дыма и огня в случае возникновения пожара.
- Приток чистого и свежего воздуха в спальни, детские или гостинные обеспечивается за счёт оконных или стенных проветривателей. Проветриватели могут оснащаться функцией регулирования объёмного притока воздуха.
- Через внутриквартирные двери или дверные решётки загрязнённый воздух из квартиры вытягивается вытяжными вентиляторами в ванной, кухне или туалете.
- □ Такая система вентиляции обеспечивает постоянную контролируемую циркуляцию воздуха в помещении, комфортный микроклимат для жильцов и высокую степень пожарной защиты.

- 1. Вытяжной вентилятор Valeo-BFD с дополнительным патрубком для вентиляции второго помещения.
- **2.** Вытяжной вентилятор **Valeo-BF**.
- 3. Настенная решётка BLAUBERG серии **DECOR**.
- 4. Стенной проветриватель BLAUBERG серии WHM.
- 5. Оконный проветриватель BLAUBERG серии FHM.
- **6.** Дверные вентиляционные решётки BLAUBERG серии **DECOR.**
- 7. Центральный вентиляционный канал.
- **8.** Гибкие термостойкие воздуховоды для подключения вытяжных вентиляторов к центральному каналу.
- 9. Межэтажная противопожарная преграда

Вытяжной центробежный вентилятор для одноканальной системы вентиляции

Valeo-E

Производительность — до $150 \,\mathrm{M}^3/4$

Применение

- Вытяжные системы вентиляции многоэтажных жилых и общественных зданий.
- Здания с однотрубной системой вентиляции.
- □ Установка в кухнях, ванных комнатах или санузлах.
- □ Для открытого монтажа на стене или потолке.

Конструкция

- □ Вентилятор состоит из пластикового корпуса для открытого монтажа и вентиляторного вытяжного модуля Valeo с плоской лицевой панелью.
- □ Корпус изготавливается из высокопрочного АБС пластика и оборудован герметичным клапаном гравитационного действия для предотвращения обратного потока.

- □ Лицевая панель вентилятора выполнена из белоснежного пластика, стойкого к ультрафиолету.
- Вентилятор комплектуется очищающим фильтром длительного использования для защиты двигателя, крыльчатки и сборного воздуховода от попадания загрязняющих веществ.
- Обеспечен легкий доступ для обслуживания фильтра. Фильтр имеет степень очистки G4.
- □ Благодаря современному дизайну и различным цветовым исполнениям лицевая панель подходит к любому интерьеру.
- □ Для облегчения установки корпуса в строго вертикальном положении предусмотрены продолговатые шлицы креплений.
- Для подвода питания к вентилятору в его корпусе предусмотрен специальный гермоввод, а на вентиляторном модуле герметичная клеммная коробка для подключения выведенной проводки.
- Диаметр патрубка 80 мм.
- Степень защиты IP55.

Двигатель

- □ Экономичный 2-х или 3-х скоростной центробежный двигатель с минимальным энергопотреблением.
- □ При изменении сопротивления вентиляционной системы вентилятор самостоятельно поддерживает постоянный расход воздуха в канале.

- ☐ Рабочее колесо выполнено из оцинкованной стали и имеет вперёд загнутые лопатки.
- □ Сбалансированная турбина обеспечивает бесшумную работу при работе вентилятора.
- □ Специальная форма улитки позволяет достигает наилучших аэродинамических характеристик.
- □ Большой срок эксплуатации благодаря подшипникам качения.
- Вентиляторный модуль с двигателем легко фиксируется в корпусе вентилятора при помощи специальных защёлок.

Управление

- □ Ступенчатое переключение скоростей осуществляется при помощи внешнего переключателя (например, модель CDP-3/5 приобретается отдельно).
- □ Большой выбор интелектуальных систем управления вентиляцией по заданным параметрам (таймер, регулируемый таймер, интервальный переключатель, датчик света, датчик влажности).

Монтаж

- Во время общестроительных работ в помещении через стену или потолок выводится гибкий воздуховод подключённый к сборному воздуховоду и проводка для подключения питания
- □ При завершении отделочных работ в помещении на патрубке вентилятора закрепляется гибкий воздуховод при помощи хомутов.
- Питание вентилятора выводится через специальный гермоввод на корпусе.
- □ Корпус устанавливается в предусмотренном месте при помощи дюбелей и выравнивается вертикально благодаря продолговатым шлицам крепления.
- □ В смонтированный и закреплёный корпус устанавливается вентиляторный модуль с подключением к заранее выведенной проводке.

Описание работы опций (для 2-х скоростных моделей)

Таймер (Valeo-E...Т)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости.

При включении внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения вентилятор продолжает работать на 2-ой скорости в течении 6 минут, после чего самостоятельно возвращается в исходное состояние.

■ Регулируемый таймер (Valeo-E...TR)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении внешним выключателем вентилятор переходит на 2-ю скорость с регулируемой задержкой от 0 до 150 секунд. После выключения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора и задержка включения 2-ой скорости устанавливается встроенным регулятором.

Интервальный переключатель (Valeo-E...I)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. В регулируемом интервале времени от 0,5 до 15 часов вентилятор работает с периодическими включениями 2-ой скорости. Время работы на 2-ой скорости – 10 минут. Интервал между включениями устанавливается внутренним

регулятором. При включении освещения внешним выключателем вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать в интервальном режиме.

■ Фотодатчик (Valeo-E...F)

В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. При включении освещения в помещении вентилятор переходит на 2-ю скорость с задержкой 50 секунд. После выключения освещения вентилятор продолжает работать на 2-ой скорости от 2-х до 30-ти минут, после чего самостоятельно возвращается в исходное состояние. Время работы вентилятора на 2-ой скорости устанавливается встроенным регулятором.

□ Датчик влажности (Valeo-E...H)

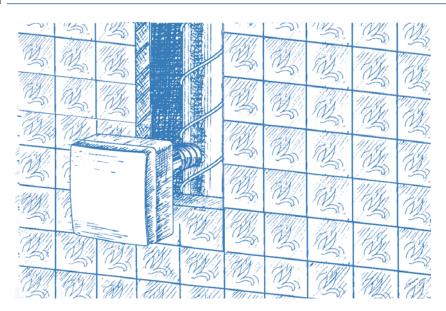
В зависимости от схемы подключения вентилятор выключен или постоянно работает на 1-ой скорости. Вентилятор включается на 2-ю скорость при повышении уровня относительной влажности в помещении, устанавливаемой в пределах от 60% до 90%. Выключается при снижении установленной относительной влажности на 10%. Вентилятор может быть включен на 2-ю скорость принудительно выключателем вместе с освещением, при этом задержка включения составляет 50 секунд, а время работы устанавливается внутренним регулятором от 2 до 30 минут.

Варианты исполнения сменных лицевых панелей

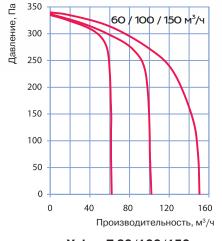
🔲 Входящая в стандартную комплектацию белоснежная лицевая панель может быть заменена на любую из ниже представленных.

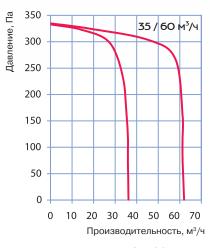
Platinum серый металлик

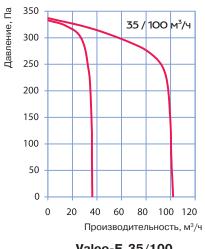
Hi-tech натуральный шлифованный алюминий



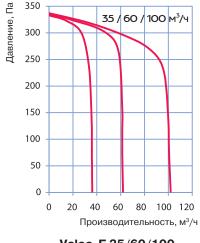
Hi-tech Gold натуральный алюминий под золото

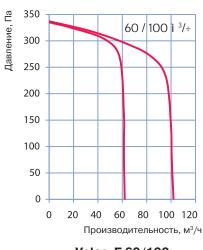



Hi-tech Chrome натуральный зеркальный алюминий


Пример установки

Параметры	Valeo-E 60/100/150	Valeo-E 35/60	Valeo-E 35/100	Valeo-E 35/60/100	Valeo-E 60/100
Количество скоростей	3	2	2	3	2
Напряжение, В (50 Гц)	220-240	220-240	220-240	220-240	220-240
Потребляемая мощность, Вт	17/27/48	12/17	12/27	12/17/27	17/27
Ток, А	0,14/0,18/0,21	0,12/0,14	0,12/0,18	0,12/0,14/0,18	0,14/0,18
Подключение к сети, мм ²	4x1,5	3x1,5	3x1,5	4x1,5	3x1,5
Макс. расход воздуха, м ³ /ч	63/102/150	35/63	35/102	35/63/102	63/102
Частота вращения, мин ⁻¹	1350/1830/2640	890/1350	890/1830	890/1350/1830	1350/1830
Уровень звукового давления на расст. 3м, dB(A)	30/35,2/43,7	26,6/30	26,6/35,2	26,6/30/35,2	30/35,2
Макс. температура перемещаемого воздуха, °С	50	50	50	50	50

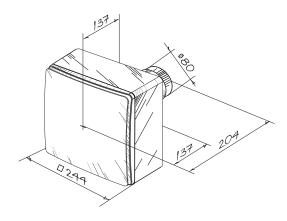




Valeo-E 35/60

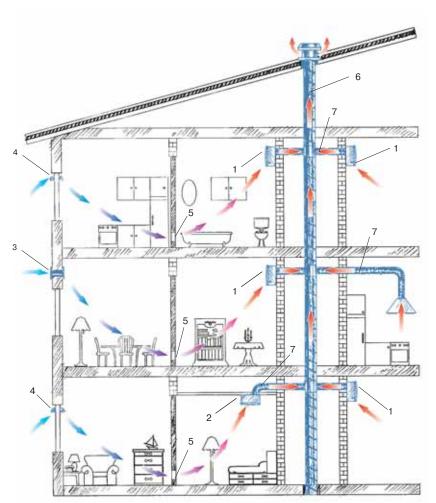
Valeo-E 35/100

Valeo-E 35/60/100


Valeo-E 60/100

Высокий потенциал вентиляторов Valeo-Е по давлению при сохранении постоянного расхода воздуха позволяет применять несколько вентиляторов в одной вентиляционной шахте.

- при 35 м³/ч располагаемое давление до 270 Па
- при 60 м³/ч располагаемое давление до 260 Па
- при 100 м³/ч располагаемое давление до 220 Па



Габаритные размеры

Пример организации одноканальной системы вентиляции в многоэтажном доме

- □ В многоэтажных жилых зданиях проектируется система вытяжной механической вентиляции кухни, ванной комнаты и туалета на базе вытяжных вентиляторов Valeo-E.
- Приток чистого и свежего воздуха в спальни, детские или гостинные обеспечивается за счёт оконных или стенных проветривателей. Проветриватели могут оснащаться функцией регулирования объёмного притока воздуха.
- Через внутриквартирные двери или дверные решётки загрязнённый воздух из квартиры вытягивается вытяжными вентиляторами в ванной, кухне или туалете.
- □ Такая система вентиляции обеспечивает постоянную контролируемую циркуляцию воздуха в помещении и комфортный микроклимат для жильцов.

- **1.** Вытяжной вентилятор **Valeo-E** (настенный монтаж).
- **2.** Вытяжной вентилятор **Valeo-E** (потолочный монтаж).
- 3. Стенной проветриватель BLAUBERG серии WHM.
- 4. Оконный проветриватель BLAUBERG серии FHM.
- **5.** Дверные вентиляционные решётки BLAUBERG серии **DECOR.**
- 6. Центральный вентиляционный канал.
- 7. Гибкие воздуховоды для подключения вытяжных вентиляторов к центральному каналу (например, воздуховоды BLAUBERG серии **BlauFlex**).

Агрегат для воздушного отопления или охлаждения

ALBE

Производительность — до $3850\,\mathrm{M}^3/\mathrm{4}$ Тепловая мощность — до $45\,\mathrm{kBm}$

Применение

- □ Нагрев или охлаждения воздуха с помощью водяного теплоносителя и равномерного его распределения в помещении с помощью вентилятора и направляющих жалюзи.
- □ Организация экономичного и эффективного воздушного отопления или охлаждения различных помещений и объектов средних и больших объемов.
- Локальный нагрев или охлаждения рабочих зон или локальных участков.

Конструкция

- □ Агрегат состоит из высокопроизводительного осевого вентилятора и медно-алюминиевого водяного теплообменника с высоким КПД.
- □ Корпус выполнен из стали с полимерным покрытием и оборудован направляющими жалюзи для равномерного распределения воздуха.
- □ С боковой стороны корпуса выведены трубы с резьбой (G 3/4") для подвода и подключения теплоносителя.
- Для установки на стену или потолок на корпусе предусмотрены монтажные кронштейны.

Двигатель

- Асинхронный двигатель с внешним ротором и крыльчаткой осевого типа.
- Исполнение двигателя однофазное.
- □ Двигатель оснащен шариковыми подшипниками для большего срока эксплуатации.
- □ Снабжен встроенной тепловой защитой с автоматическим перезапуском.

Регулировка скорости

- □ Плавная или ступенчатая регулировка скорости вращения вентилятора при помощи тиристорного или автотрансформаторного регулятора (приобретаются отдельно).
- □ Понижение скорости вращения вентилятора позволяет уменьшить расход воздуха и соответственно объём теплопередачи на отопление или охлаждение.

Монтаж .

☐ Агрегат устанавливается вертикально на стены или колонны при помощи кронштейнов или в горизонтальном положении на потолках или балках.

Технические характеристики

Параметры	ALBE-25	ALBE-30	ALBE-45
Напряжение питания агрегата, В (50 Гц)	220-240	220-240	220-240
Потребляемая мощность вентилятора, Вт	136	191	255
Ток вентилятора, А	0,6	0,85	1,12
Частота вращения, мин ⁻¹	1350	1440	1360
Макс. расход воздуха, м³/ч	2200	3000	3850
Уровень звукового давления на расст. 3м, dB(A)	53	55	58
Максимальная температура теплоносителя, ^о С	100	100	100
Защита	IP44	IP44	IP44
Класс изоляции	F	В	F

Технические характеристики для нагрева

		T		ALBI	E-25	
Расход воздуха, м³/ч	Темп. воды на входе, °С	Темп. входящего воздуха, °С	Мощность, кВт	Температура на выходе, °С	Расход воды, м³/ч	Потеря давления воды, кПа
		-15	34,5	26	1,5	7,5
		-10	32	29	1,4	6,6
		-5	30	32	1,3	5,8
	90/70	0	28	35	1,2	5,2
		5	26,2	38,5	1,2	4,5
		10	24,2	41,4	1,1	3,9
		15	22,1	44,2	1,0	3,3
	80/60	-15	30,4	21,2	1,3	6,0
		-10	28,3	24,3	1,2	5,3
		-5	26,2	27,4	1,2	4,6
		0	24,1	30,4	1,1	4,0
		5	22,1	33,3	1,0	3,3
		10	20,1	36,1	0,9	2,8
		15	18,1	38,8	0,8	2,3
2200		-15	26	16	1,1	4,6
		-10	24	19,2	1,1	4,0
		-5	22	22	1,0	3,4
	70/50	0	20	25	0,9	2,8
		5	18	28	0,8	2,3
		10	15,9	30,6	0,7	1,9
		15	13,8	33	0,6	1,4
		-15	22	11	1,0	3,4
		-10	20	14	0,9	2,8
		-5	18	17	0,8	2,3
	60/40	0	16	20	0,7	1,8
		5	14	22	0,6	1,4
		10	12	25	0,5	1,0
		15	9,0	27	0,4	0,7

Технические характеристики для охлаждения _____

Расход	Темп. воды	Темп.	ALBE-25						
воздуха, м ³ /ч	на входе, °С	входящего воздуха, °С	Мощность, кВт	Температура на выходе, °С	Расход воды, м³/ч	Потеря давления воды, кПа			
	7/10	35	9,1	26	1,6	7,5			
2200		30	5,8	22,5	1,0	6,1			
2200	7/12	25	3,2	21	0,6	2,1			
		20	2,0	18	0,3	0,9			

Ventbazar.com.ua; .: (044) 50 000 5

Технические характеристики для нагрева

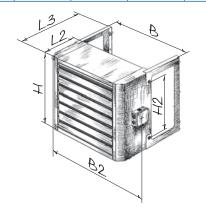
		Ta		ALBI	E-30	
Расход воздуха, м³/ч	Темп. воды на входе, °С	Темп. входящего воздуха, °С	Мощность, кВт	Температура на выходе, ^О С	Расход воды, м³/ч	Потеря давления воды, кПа
		-15	48,4	27,2	2,1	7,4
		-10	45,4	30,3	2,0	6,6
		-5	42,4	33,4	1,9	5,9
	90/70	0	39,5	36,4	1,7	5,2
		5	36,7	39,4	1,6	4,5
		10	33,8	42,1	1,5	3,9
		15	31	44,9	1,4	3,3
		-15	42	22	1,9	6,0
		-10	39	25,2	1,7	5,3
		-5	36,7	28,2	1,6	4,6
	80/60	0	33,8	31,1	1,5	3,9
		5	30,9	34,0	1,4	3,4
		10	28,1	36,7	1,2	2,8
3000		15	25,3	40	1,1	2,3
3000		-15	36,6	17	1,6	4,7
		-10	33,7	20	1,5	4,0
		-5	30	22,9	1,4	3,4
	70/50	0	28	25,7	1,2	2,9
		5	25	28,5	1,1	2,4
		10	22	31,1	1,0	1,9
		15	19,4	33,7	0,9	1,5
		-15	31	11,7	1,3	3,5
		-10	27,6	14,6	1,2	2,9
		-5	24	17,4	1,1	2,4
	60/40	0	21	20	1,0	1,9
		5	19	22,7	0,8	1,5
		10	16	25,2	0,7	1,1
		15	13	27,5	0,6	0,7

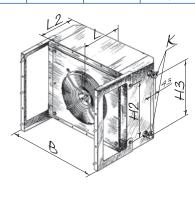
■ Технические характеристики для охлаждения ____

Расход	Tour poru	Темп.	ALBE-30					
воздуха, м ³ /ч	Темп. воды на входе, °С	входящего воздуха, °С	Мощность, кВт	Температура на выходе, °С	Расход воды, м³/ч	Потеря давления воды, кПа		
		35	11,4	27	2,0	11,2		
2000	7/10	30	7,3	22,9	1,3	5,0		
3000	7/12	25	3,9	21,1	0,7	1,6		
		20	2,4	17,7	0,4	0,7		

Технические характеристики для охлаждения

_	Расход воздуха, м³/ч	Темп. воды	Темп.	ALBE-45					
		на входе, °С	входящего воздуха, °С	Мощность, кВт	Температура на выходе, °С	Расход воды, м³/ч	Потеря давления воды, кПа		
		7/12	35	18,0	24,9	3,1	31,8		
	2050		30	10,8	21,7	1,9	12,9		
	3850		25	7,3	19	1,3	6,3		
		20	3,2	17,4	0,5	1,4			




Технические характеристики для нагрева


Расход	Tour poru	Темп.			ALBE-45	
воздуха, м ³ /ч	Темп. воды на входе, °С	входящего воздуха, °С	Мощность, кВт	Температура на выходе, °С	Расход воды, м³/ч	Потеря давления воды, кПа
		-15	63,0	28,4	2,8	11,9
		-10	59,2	31,5	2,6	10,6
		-5	55,4	34,6	2,4	9,4
	90/70	0	51,6	37,5	2,3	8,3
		5	47,9	40,4	2,1	7,3
		10	44,3	43,2	2,0	6,3
		15	40,6	45,9	1,8	5,4
		-15	55,6	23,3	2,4	9,7
		-10	51,8	26,4	2,3	8,5
		-5	48,0	29,3	2,1	7,4
	80/60	0	44,3	32,2	2,0	6,4
		5	40,6	35,0	1,8	5,5
		10	37,0	37,8	1,6	4,6
3850		15	33,4	40,4	1,5	3,8
3650		-15	48,1	18,1	2,1	7,6
		-10	44,3	21,1	1,9	6,6
		-5	40,6	23,9	1,8	5,6
	70/50	0	36,9	26,8	1,6	4,7
		5	33,2	29,5	1,5	3,9
		10	29,6	32,2	1,3	3,2
		15	26,0	34,8	1,1	2,5
		-15	40,4	12,8	1,8	5,7
		-10	36,7	15,7	1,6	4,8
		-5	32,9	18,5	1,4	3,9
	60/40	0	29,2	21,3	1,3	3,2
		5	25,6	23,9	1,1	2,5
		10	21,9	26,4	1,0	1,9
		15	18,1	28,8	0,8	1,3

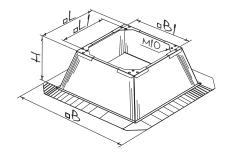
Габаритные размеры ____

	Размеры, мм										Macca,
Тип	В	B2	Н	H2	Н3	L	L2	L3	К	Кол-во рядов трубок	KΓ
ALBE-25	680	785	605	450	468	360	286	600	G 3/4"	2	37,0
ALBE-30	680	785	655	500	518	360	286	650	G 3/4"	2	40,0
ALBE-45	780	885	710	550	570	380	300	700	G 3/4"	2	50,0

Moнтажная рама MRDL / MRIDL

для крышных вентиляторов

Применение


- 🔲 Для установки и монтажа крышных вентиляторов серии Tower-H, Tower-V, Tower-H EC, Tower-A, Tower-A, Tower-AL на плоской крыше
- Исключает попадание воды внутрь вентиляционного канала

Конструкция

- □ Монтажные рамы идут в простом (тип MRDL) или в изолированном исполнении (тип MRIDL).
- □ Корпус монтажной рамы изготавливается из оцинкованной стали
- □ В серии MRIDL имеется теплозвукоизоляционный слой из минеральной ваты толщиной 20 мм.
- □ Специальные фланцы у основания рамы позволяют легко и надёжно монтировать её на кровле.
- ☐ На корпусе предусмотрены отверстия с резьбой для крепления вентилятора с помощью болтов.

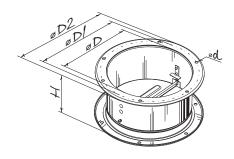
Монтаж

- Монтажная рама закрепляется на кровле при помощи фланцев у основания и о изолируется.
- Вентилятор закрепляется на монтажной раме при помощи болтов.

Тип		Р	азмеры, м	М		Macca,
INII	В	B1	Н	L	L1	КГ
MRDL 200-225	720	254	300,5	301	245	10,4
MRDL 250-315	810	352	300,5	401	330	12,0
MRDL 355-400	980	506	300,5	561	450	16,4
MRDL 450-500	997	576	300,5	631	535	16,9

Тип		Р	азмеры, м	М		Macca,
	В	B1	Н	L	L1	КГ
MRIDL 200-225	720	254	300,5	301	245	13,8
MRIDL 250-315	810	352	300,5	401	330	16,9
MRIDL 355-400	980	506	300,5	561	450	20,3
MRIDL 450-500	997	576	300,5	631	535	21,2

Клапан обратный *KDL*


для крышных вентиляторов

Применение

- Для автоматического перекрытия сечения воздуховода при отключении вентилятора.
- □ Предотвращение обратной тяги при выключенной системе вентиляции.
- □ Для монтажа с крышными вентиляторами серии Tower-H, Tower-V, Tower-H EC, Tower-V EC.

Конструкция

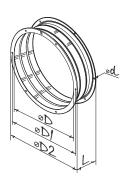
- □ Корпус и поворотная пластина изготовлены из оцинкованной стали.
- □ Клапан имеет гравитационный тип действия (пластина клапана открывается под действием потока воздуха и закрывается при прекращении подачи воздуха).
- ☐ Клапан оснащён фланцами для соединения с крышным вентилятором, гибкой вставкой типа VDL или контрфланцем типа FDL.

Тип		Размеры, мм							
	ØD	ØD1	ØD2	Ød	Н	КГ			
KDL 220-225	183	213	235	7	115	1,0			
KDL 250-315	256	285	306	7	156	1,7			
KDL 355-500	402	438	464	9	220	3,5			

Гибкая вставка VDL

для крышных вентиляторов

Применение


- Для исключения передачи вибраций от вентиляторов к воздуховоду.
- Для частичной компенсации температурной деформации в трассе воздуховода.
- □ Для монтажа с крышными вентиляторами серии Tower-H, Tower-V, Tower-H EC, Tower-V EC

Конструкция

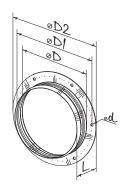
- □ Гибкая вставка представляет собой два фланца, соединённых между собой виброизолирующим материалом.
- Фланцы изготавливаются из оцинкованной стали.
- □ Соединительный виброизолирующий материал выполнен из полиэтиленовой ленты, укрепленной полиамидной текстильной тканью.

Монтаж

☐ Для монтажа используются оцинкованные болты и скобы, которыми крепятся торцевые фланцы гибкой вставки к ответным фланцам воздуховода, вентилятора, контрфланца типа FDL или обратного клапана типа KDL.

Тип		Размеры, мм							
	ØD	ØD1	ØD2	Ød	L	КГ			
VDL 220-225	183	213	235	7	200	0,8			
VDL 250-315	256	285	308	7	200	1,2			
VDL 355-500	402	438	484	9	200	1,75			

Контрфланец *FDL*для крышных вентиляторов


Применение
Для соединения круглых воздуховодов с крышными вентиляторами серии Tower-H, Tower-V, Tower-H EC, Tower-V EC.

Конструкция _____

Изготавливается из оцинкованной стали.

Монтаж

□ Соединяется торцевой частью с вентилятором или другими принадлежностями при помощи болтов, а ответной частью соединяется с воздуховодом.

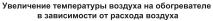
Tun		Р	азмеры, м	М		Macca,
Тип	ØD	ØD1	ØD2	Ød	L	КГ
FDL 220-225	183	213	235	7	40	0,34
FDL 250-315	256	285	306	7	40	0,52
FDL 355-500	402	438	464	9	40	1,05

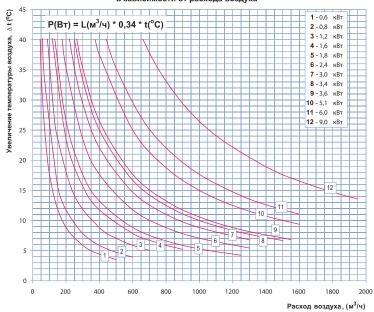
Канальный электрический нагреватель **ЕКН**

для круглых каналов

Применение

- Для подогрева приточного воздуха в системах отопления, вентиляции и кондиционирования различных помещений.
- □ Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

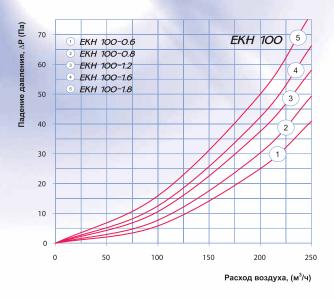

Конструкция

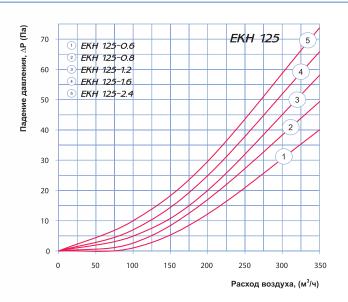

- □ Корпус и коммутационная коробка изготавливаются из оцинкованной стали.
- Нагревательные элементы выполнены из нержавеющей стали.
- □ Герметичность соединения с воздуховодами обеспечивают резиновые уплотнители.
- □ Предусмотрено несколько вариантов мощностей для каждого типоразмера.
- □ Для достижения большей совокупной мощности возможна установка нагревателей последовательно один за другим.
- Оборудованы термостатами защиты от перегрева:
- основная защита с автоматическим перезапуском при +50 °C;
- аварийная защита с ручным перезапуском при +90 °C.

Монтаж

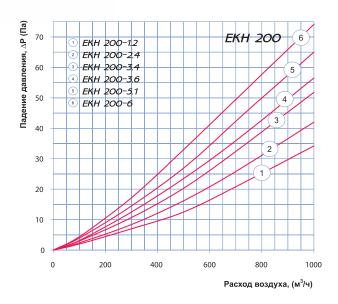
- □ Крепление с круглыми воздуховодами при помощи хомутов.
- Возможна установка в любом положении, кроме положения коммутационной коробкой вниз (во избежание затекания конденсата и замыкания электропроводки).
- □ Перед нагревателем устанавливается фильтр, который защищает от загрязнения нагревательные элементы.

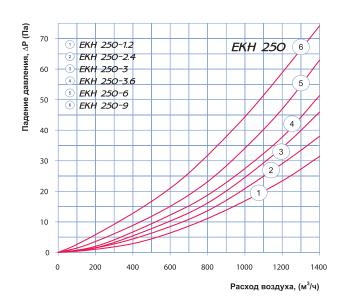
- □ Рекомендуемое расстояние между нагревателем и остальными элементами системы должно быть не менее двух присоединительных диаметров для стабилизации потока воздуха.
- □ Канальные нагреватели рассчитаны на минимальную скорость воздушного потока 1,5 м/с и максимальную рабочую температуру входящего воздуха 40 °С. В случае использования регулятора оборотов вентилятора, необходимо обеспечить минимальный расход воздуха через нагреватель.
- □ Для правильной и безопасной работы нагревателя рекомендуется применять автоматическую систему комплексного управления и защиты:
- регулировку мощности и температуры нагрева воздуха;
- отслеживание состояния фильтра при помощи датчика дифференциального давления;
- блокирование подачи питания на нагреватель в случае остановки приточного вентилятора или снижения скорости потока воздуха, а также при срабатывании встроенных термостатов защиты от перегрева;
- отключение системы вентиляции с продувкой ТЭНов нагревателя.

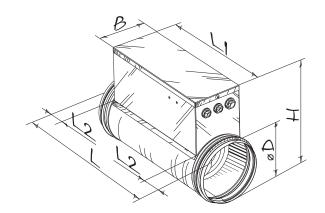


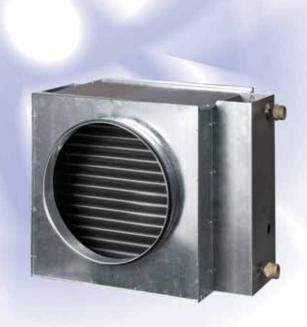


Технические характеристики ____


Тип	Мин. расход воздуха, м ³ /ч	Потребляемый ток, А	Напряжение питания, В	Мощность, кВт	Количество ТЭНов х мощность, кВт	Количество фаз
EKH 100-0.6	60	2,6	230	0,6	1x0,6	1
EKH 100-0.8	80	3,5	230	0,8	1x0,8	1
EKH 100-1.2	90	5,2	230	1,2	2x0,6	1
EKH 100-1.6	120	7,0	230	1,6	2x0,8	1
EKH 100-1.8	130	7,8	230	1,8	3x0,6	1
EKH 125-0.6	60	2,6	230	0,6	1x0,6	1
EKH 125-0.8	80	3,5	230	0,8	1x0,8	1
EKH 125-1.2	90	5,2	230	1,2	2x0,6	1
EKH 125-1.6	120	7,0	230	1,6	2x0,8	1
EKH 125-2.4	150	7,8	230	2,4	3x0,8	1
EKH 150-1.2	120	5,2	230	1,2	1x1,2	1
EKH 150-2.4	150	10,4	230	2,4	2x1,2	1
EKH 150-3.4	220	14,7	230	3,4	2x1,7	1
EKH 150-3.6	265	5,2	400	3,6	3x1,2	3
EKH 150-5.1	320	7,4	400	5,1	3x1,7	3
EKH 150-6	360	8,7	400	6,0	3x2,0	3
EKH 160-1.2	150	5,2	230	1,2	1x1,2	1
EKH 160-2.4	180	10,4	230	2,4	2x1,2	1
EKH 160-3.4	250	14,8	230	3,4	2x1,7	1
EKH 160-3.6	265	5,2	400	3,6	3x1,2	3
EKH 160-5.1	375	7,4	400	5,1	3x1,7	3
EKH 160-6	440	8,7	400	6,0	3x2,0	3
EKH 200-1.2	150	5,2	230	1,2	1x1,2	1
EKH 200-2.4	180	10,4	230	2,4	2x1,2	1
EKH 200-3.4	250	14,8	230	3,4	2x1,7	1
EKH 200-3.6	265	5,2	400	3,6	3x1,2	3
EKH 200-5.1	375	7,4	400	5,1	3x1,7	3
EKH 200-6	440	8,7	400	6,0	3x2,0	3
EKH 250-1.2	180	5,2	230	1,2	1x1,2	1
EKH 250-2.4	265	10,4	230	2,4	2x1,2	1
EKH 250-3	375	13,0	230	3,0	1x3,0	1
EKH 250-3.6	375	5,2	400	3,6	3x1,2	3
EKH 250-6	440	8,7	400	6,0	3x2,0	3
EKH 250-9	660	13,0	400	9,0	3x3,0	3
EKH 315-1.2	180	5,2	230	1,2	1x1,2	1
EKH 315-2.4	265	10,4	230	2,4	2x1,2	1
EKH 315-3.6	375	5,2	400	3,6	3x1,2	3
EKH 315-6	440	8,7	400	6,0	3x2,0	3
EKH 315-9	660	13,0	400	9,0	3x3,0	3


Технические характеристики





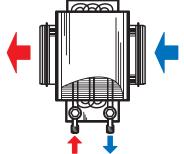
		Размеры, мм								
Тип	ØD	В	Н	L	L1	L2	Масса, кг			
EKH 100-0.6	99	94	207	306	226	40	2,6			
EKH 100-0.8	99	94	207	306	226	40	2,6			
EKH 100-1.2	99	94	207	306	226	40	2,9			
EKH 100-1.6	99	94	207	306	226	40	2,9			
EKH 100-1.8	99	94	207	376	296	40	3,1			
EKH 125-0.6	124	103	230	306	226	40	2,4			
EKH 125-0.8	124	103	230	306	226	40	2,4			
EKH 125-1.2	124	103	230	306	226	40	2,7			
EKH 125-1.6	124	103	230	306	226	40	2,7			
EKH 125-2.4	124	103	230	376	296	40	3,0			
EKH 150-1.2	149	120	255	306	226	40	2,5			
EKH 150-2.4	149	120	255	306	226	40	3,1			
EKH 150-3.4	149	120	255	306	226	40	3,1			
EKH 150-3.6	149	120	255	376	296	40	4,1			
EKH 150-5.1	149	120	255	376	296	40	4,1			
EKH 150-6	149	120	255	376	296	40	4,1			
EKH 160-1.2	159	120	267	306	226	40	2,1			
EKH 160-2.4	159	120	267	306	226	40	2,9			
EKH 160-3.4	159	120	267	306	226	40	3,2			
EKH 160-3.6	159	120	267	376	296	40	3,9			
EKH 160-5.1	159	120	267	376	296	40	3,9			
EKH 160-6	159	120	267	376	296	40	3,9			
EKH 200-1.2	199	150	302	294	214	40	2,4			
EKH 200-2.4	199	150	302	294	214	40	3,2			
EKH 200-3.4	199	150	302	294	214	40	3,3			
EKH 200-3.6	199	150	302	376	296	40	4,1			
EKH 200-5.1	199	150	302	376	296	40	4,1			
EKH 200-6	199	150	302	376	296	40	4,1			
EKH 250-1.2	249	150	356	306	226	40	2,4			
EKH 250-2.4	249	150	356	306	226	40	2,6			
EKH 250-3	249	150	356	306	226	40	2,4			
EKH 250-3.6	249	150	356	376	296	40	2,9			
EKH 250-6	249	150	356	376	296	40	2,9			
EKH 250-9	249	150	356	376	296	40	2,9			
EKH 315-1.2	313	150	425	294	214	40	2,6			
EKH 315-2.4	313	150	425	294	214	40	2,8			
EKH 315-3.6	313	150	425	376	296	40	3,1			
EKH 315-6	313	150	425	376	296	40	3,1			
EKH 315-9	313	150	425	376	296	40	3,1			

Канальные водяные нагреватели *WKH*

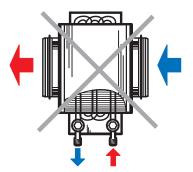
для круглых каналов

Применение

- Для подогрева приточного воздуха в системах вентиляции различных помещений.
- □ Возможно использование в качестве подогревателя воздуха в приточных или приточно-вытяжных установках.
- □ Устанавливаются только внутри помещений, если в качестве теплоносителя используется вода. Для наружного применения необходимо использовать в нагревателе незамерзающую смесь (например, раствор этиленгликоля).
- □ Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.


Конструкция

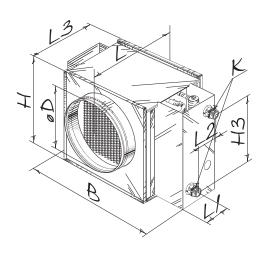
- Корпус изготавливается из оцинкованной стали.
- Трубные коллекторы выполнены из медных трубок.
- □ Поверхность теплообмена произведена из алюминиевых пластин.
- □ Герметичность соединения с воздуховодами обеспечивают резиновые уплотнители.
- □ Оборудованы ниппелем для обезвоздушивания системы.
- □ На выходном коллекторе предусмотрен патрубок для установки погружного датчика измерения температуры или защиты от обмораживания.
- □ Выпускаются в двух- или четырехрядном исполнении трубок.
- □ Допускается эксплуатация при максимальном рабочем давлении 1,6 МПа (16 бар) и максимальной рабочей температуре воды +100 °C.


Монтаж

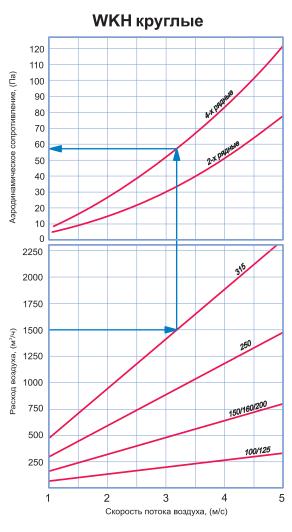
- Крепление с круглыми воздуховодами при помощи хомутов.
 Логрускатов установка в побом положения дозродения.
- □ Допускается установка в любом положении, позволяющем выполнять обезвоздушивание.
- Перед нагревателем устанавливается фильтр, который защищает от загрязнения нагревательные элементы.

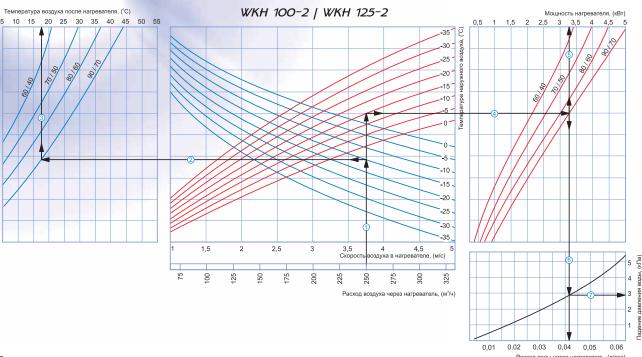
- □ Нагреватель монтируется перед или за вентилятором. Если нагреватель устанавливается за вентилятором, рекомендуется предусмотреть между ними расстояние не менее двух присоединительных диаметров для стабилизации потока воздуха, а также не превышать максимально допустимую температуру воздуха внутри вентилятора.
- Подключение калорифера осуществляется по принципу противотока, иначе его производительность снижается на 5-15 %. Все номограммы в каталоге рассчитаны для такого подключения.
- Для правильной и безопасной работы нагревателя рекомендуется применять автоматическую систему комплексного управления и защиты:
- регулировку мощности и температуры нагрева воздуха;
- отслеживание состояния фильтра при помощи датчика дифференциального давления;
- включение системы вентиляции с предварительным прогревом нагревателя:
- применение воздушных заслонок, оборудованных сервоприводом с возвратной пружиной;
- остановку вентилятора в случае угрозы замерзания нагревателя.

Подключение против направления потока воздуха



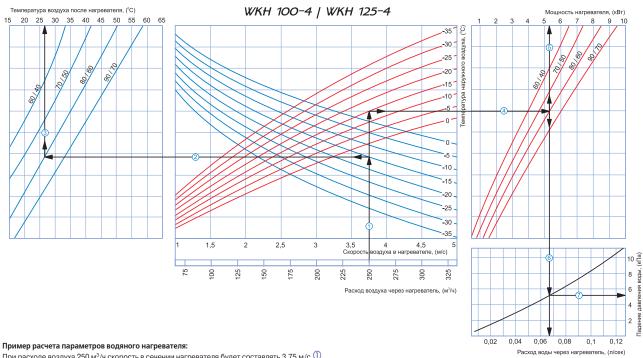
Подключение по направлению потока воздуха




Габаритные размеры

				P	азмеры, м	М				Кол-во рядов трубок	Macca,
Тип	ØD	В	Н	НЗ	L	L1	L2	L3	K		КГ
WKH 100-2	99	350	230	150	300	32	43	220	G 3/4"	2	3,9
WKH 100-4	99	350	230	150	300	28	65	220	G 3/4"	4	5,2
WKH 125-2	124	350	230	150	300	32	43	220	G 3/4"	2	4,0
WKH 125-4	124	350	230	150	300	28	65	220	G 3/4"	4	5,3
WKH 150-2	149	400	280	200	300	32	43	220	G 3/4"	2	7,5
WKH 150-4	149	400	280	200	300	28	65	220	G 3/4"	4	8,2
WKH 160-2	159	400	280	200	300	32	43	220	G 3/4"	2	7,5
WKH 160-4	159	400	280	200	300	28	65	220	G 3/4"	4	8,2
WKH 200-2	198	400	280	200	300	32	43	220	G 3/4"	2	7,5
WKH 200-4	198	400	280	200	300	28	65	220	G 3/4"	4	8,2
WKH 250-2	248	470	350	270	350	32	43	270	G 1"	2	10,3
WKH 250-4	248	470	350	270	350	28	65	270	G 1"	4	10,8
WKH 315-2	313	550	430	350	450	57	43	370	G 1"	2	12,6
WKH 315-4	313	550	430	350	450	53	65	370	G 1"	4	13,4

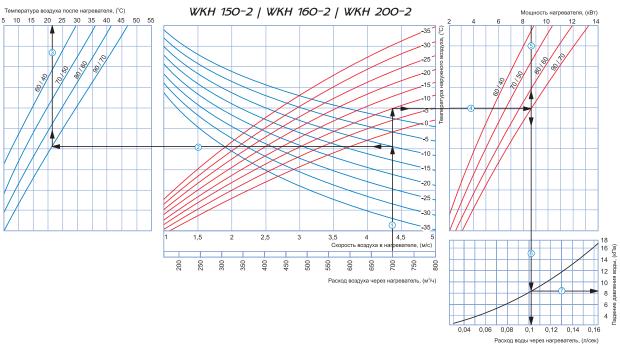
Потери давления воздуха водяных нагревателей WKH



Пример расчета параметров водяного нагревателя:

При расходе воздуха 250 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с

О.


- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15°С) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (17,50°C)3
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (восходящая красная линия, например, -15°C) провести вправо линию ⊕ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (3,25 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (€) на ось расхода воды через нагреватель (0,042 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии (€) с графиком потери давления и провести перпендикуляр (Ў) вправо, на ось падения давления воды (2,9 кПа).

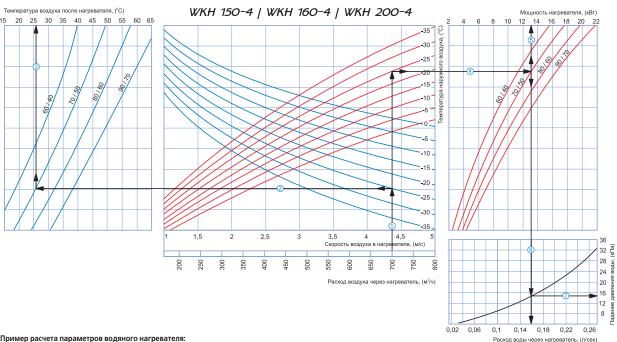
При расходе воздуха 250 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15°С) провести влево линию ② до пересечения с температурным перепадом воды (например, 80/60) и поднять перпендикуляр на ось температуры воздуха после нагревателя (27°C)3
- 🗷 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия, например, -15°C) провести вправо линию 🗓 до пересечения с температурным перепадом воды (например, 80/60) и поднять перпендикуляр на ось мощности нагревателя (5,2 кВт) 🖫
- 🗷 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр 🌀 на ось расхода воды через нагреватель (0,067 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🗷 вправо, на ось падения давления воды (5,2 кПа).

Пример расчета параметров водяного нагревателя:

При расходе воздуха 700 м³/ч скорость в сечении нагревателя будет составлять 4,4 м/с $^{\bigcirc}$.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -10°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (21°C) 3.
- 🗷 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия, например, -10°С) провести вправо линию 🎱 до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (8,6
- то пределения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр

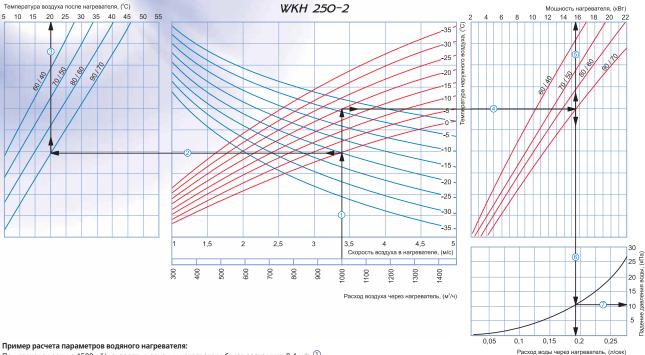

 пределения падения давления воды через нагреватель необходимо найти точку пересечения линии

 точку пересечения пересечения пересечения линии

 точку пересечения пересечения пересечения пересечения линии

 точку пересечения пересечения пересечения пересечения линии

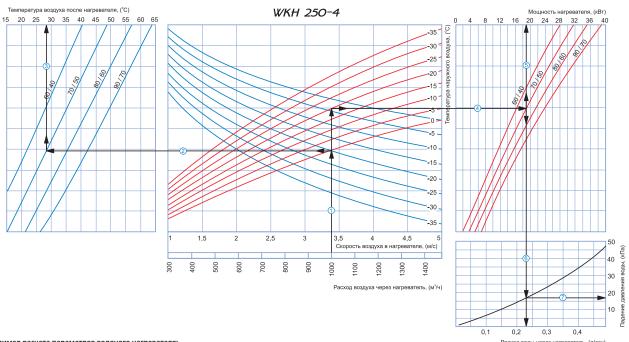
 точку пересечения пересечени ось падения давления воды (8,2 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 700 м³/ч скорость в сечении нагревателя будет составлять 4,4 м/с \odot .

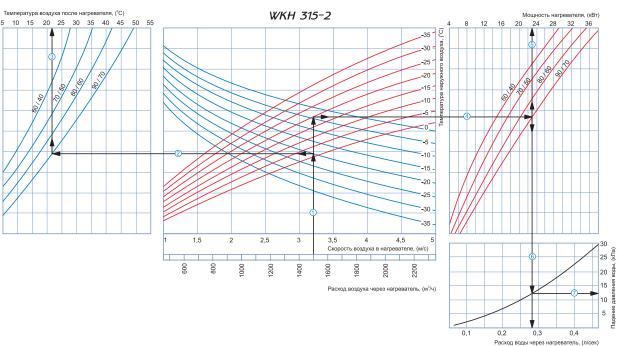
- 🗷 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (нисходящая синяя линия, например, -25°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (26°C) 3.
- 🗷 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия, например, -25°С) провести вправо линию 🎱 до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (13,0
- то пределения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,16 л/сек).


 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на
- ось падения давления воды (15 кПа).

При расходе воздуха 1500 м³/ч скорость в сечении нагревателя будет составлять 3,4 м/с \odot .

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°С) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (15,5 кВт) ⑤.

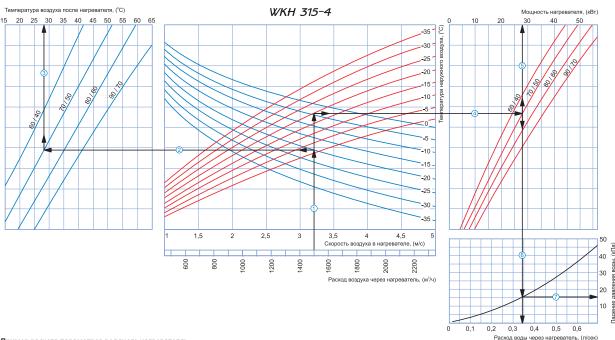
 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,19 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (11,0 кПа).


Пример расчета параметров водяного нагревателя:

При расходе воздуха 1000 м³/ч скорость в сечении нагревателя будет составлять 3,4 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию © до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (28°C) 3.
- 🗷 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°С) провести вправо линию ⊕ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагреватель (19,0 кВт) ⑤.

 ■ Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,23 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🗇 вправо, на ось падения давления воды (17,0 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 1500 м³/ч скорость в сечении нагревателя будет составлять 3,2 м/с

О

- 🗷 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (21°C) 3.
- 🗷 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия, например, -20°С) провести вправо линию 🏵 до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (23,0 кВт) (5).
- 🗷 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр 📵 на ось расхода воды через нагреватель (0,28 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🗇 вправо, на ось падения давления воды (12,5 кПа).

Пример расчета параметров водяного нагревателя:

При расходе воздуха 1500 м³/ч скорость в сечении нагревателя будет составлять 3,2 м/с \bigcirc .

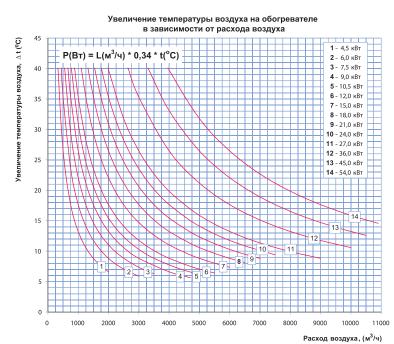
- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурым перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (28°C) 3
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°С) провести вправо линию 🎱 до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (28,0
- 7.
 7.
 7.
 7.
 7.
 7.
 8.
 18.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19.
 19. ось падения давления воды (16,0 кПа).

Канальные электрические нагреватели **ЕКН**

для прямоугольных каналов

Применение

- Для подогрева приточного воздуха в системах отопления, вентиляции и кондиционирования различных помещений.
- Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

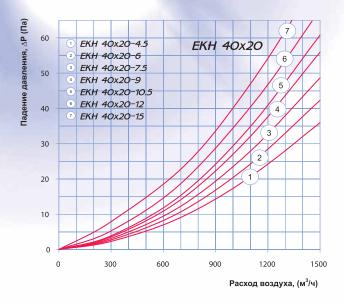

Конструкция

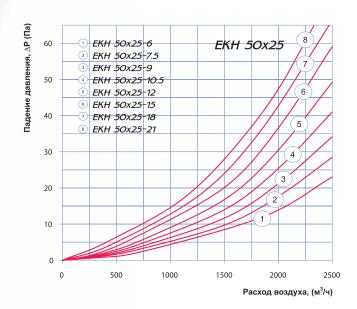
- □ Корпус и коммутационная коробка изготавливаются из оцинкованной стали.
- □ Нагревательные элементы выполнены из нержавеющей стали и снабжены дополнительным оребрением для увеличения площади теплообмена.
- □ Предусмотрено несколько вариантов мощностей для каждого типоразмера.
- □ Для достижения большей совокупной мощности возможна установка нагревателей последовательно один за другим.
- Оборудованы термостатами защиты от перегрева:
- основная защита с автоматическим перезапуском при +50 °C;
- аварийная защита с ручным перезапуском при +90 °C.

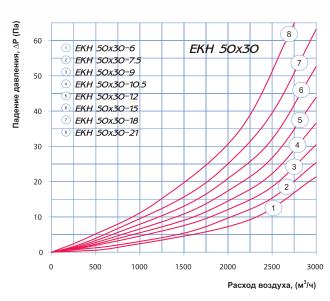
Монтаж

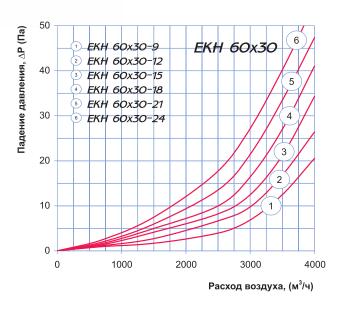
- Крепление с прямоугольными каналами при помощи фланцевого соединения.
- Возможна установка в любом положении, кроме положения коммутационной коробкой вниз (во избежание затекания конденсата и замыкания электропроводки).
- □ Перед нагревателем устанавливается фильтр, который защищает от загрязнения нагревательные элементы.

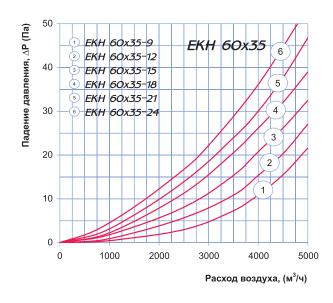
- □ Рекомендуемое расстояние между нагревателем и остальными элементами системы должно быть не менее диагонали калорифера для стабилизации потока воздуха.
- □ Канальные нагреватели рассчитаны на минимальную скорость воздушного потока 1,5 м/с и максимальную рабочую температуру входящего воздуха 40 °С. В случае использования регулятора оборотов вентилятора, необходимо обеспечить минимальный расход воздуха через нагреватель.
- □ Для правильной и безопасной работы нагревателя рекомендуется применять автоматическую систему комплексного управления и защиты:
- регулировку мощности и температуры нагрева воздуха;
- отслеживание состояния фильтра при помощи датчика дифференциального давления;
- блокирование подачи питания на нагреватель в случае остановки приточного вентилятора или снижения скорости потока воздуха, а также при срабатывании встроенных термостатов защиты от перегрева;
- отключение системы вентиляции с продувкой ТЭНов нагревателя.

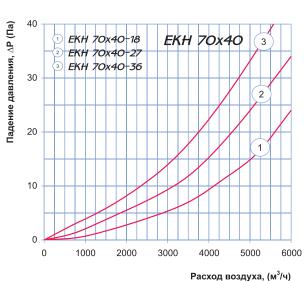


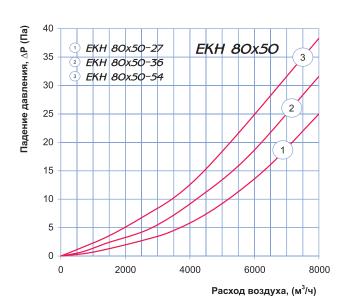


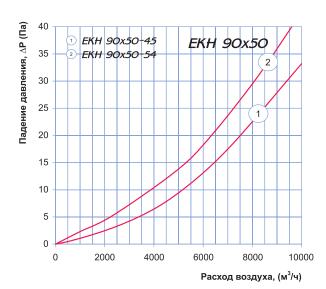

Технические характеристики _____

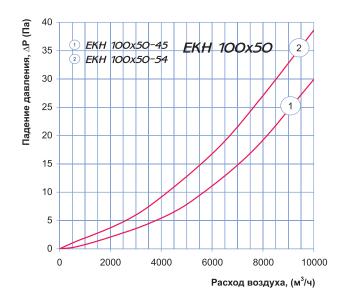

Тип	Мин. расход воздуха, м ³ /ч	Потребляемый ток, А	Напряжение питания, В	Мощность, кВт	Количество ТЭНов х мощность, кВт
EKH 40x20-4.5	330	6,5	400	4,5	3x1,5
EKH 40x20-6	440	8,7	400	6,0	3x2,0
EKH 40x20-7.5	550	10,9	400	7,5	3x2,5
EKH 40x20-9	660	13,0	400	9,0	3x3,0
EKH 40x20-10.5	770	15,2	400	10,5	3x3,5
EKH 40x20-12	880	17,4	400	12,0	3x4,0
EKH 40x20-15	1100	21,7	400	15,0	3x5,0
EKH 50x25-6	440	8,7	400	6,0	3x2,0
EKH 50x25-7.5	550	10,9	400	7,5	3x2,5
EKH 50x25-9	660	13,0	400	9,0	3x3,0
EKH 50x25-10.5	770	15,2	400	10,5	3x3,5
EKH 50x25-12	880	17,4	400	12,0	3x4,0
EKH 50x25-15	1100	21,7	400	15,0	3x5,0
EKH 50x25-18	1320	26,0	400	18,0	3x6,0
EKH 50x25-21	1540	30,0	400	21,0	3x7,0
EKH 50x30-6	440	8,7	400	6,0	3x2,0
EKH 50x30-7.5	550	10,9	400	7,5	3x2,5
EKH 50x30-9	660	13,0	400	9,0	3x3,0
EKH 50x30-10.5	770	15,2	400	10,5	3x3,5
EKH 50x30-12	880	17,4	400	12,0	3x4,0
EKH 50x30-15	1100	21,7	400	15,0	3x5,0
EKH 50x30-18	1320	26,0	400	18,0	3x6,0
EKH 50x30-21	1540	30,0	400	21,0	3x7,0
EKH 60x30-9	660	13,0	400	9,0	3x3,0
EKH 60x30-12	880	17,4	400	12,0	3x4,0
EKH 60x30-15	1100	21,7	400	15,0	3x5,0
EKH 60x30-18	1320	26,0	400	18,0	3x6,0
EKH 60x30-21	1540	30,0	400	21,0	3x7,0
EKH 60x30-24	1760	34,7	400	24,0	3x8,0
EKH 60x35-9	660	13,0	400	9,0	3x3,0
EKH 60x35-12	880	17,4	400	12,0	3x4,0
EKH 60x35-15	1100	21,7	400	15,0	3x5,0
EKH 60x35-18	1320	26,0	400	18,0	3x6,0
EKH 60x35-21	1540	30,0	400	21,0	3x7,0
EKH 60x35-24	1760	34,7	400	24,0	3x8,0
EKH 70x40-18	1320	26,0	400	18,0	6x3,0
EKH 70x40-27	1980	39,0	400	27,0	9x3,0
EKH 70x40-36	2640	52,0	400	36,0	12x3,0
EKH 80x50-27	1980	39,0	400	27,0	9x3,0
EKH 80x50-36	2640	52,0	400	36,0	12x3,0
EKH 80x50-54	3960	78,0	400	54,0	18x3,0
EKH 90x50-45	3300	65,0	400	45,0	15x3,0
EKH 90x50-54	3960	78,0	400	54,0	18x3,0
EKH 100x50-45	3300	65,0	400	45,0	15x3,0
EKH 100x50-54	3960	78,0	400	54,0	18x3,0

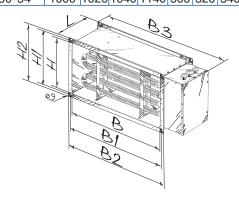

Технические характеристики











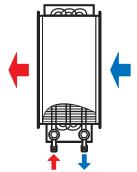
_			Раз	мерь	I, MM				Macca,
Тип	В	B1	B2	В3	Н	H1	H2	L	КГ
EKH 40x20-4.5	400	420	440	540	200	220	240	200	6,5
EKH 40x20-6	400	420	440	540		220			-
EKH 40x20-7.5	400	420	440	540		220			6,5
EKH 40x20-9	400	420	440	540		220		_	6,5
EKH 40x20-10.5	400	420	440	540		220			6,5
EKH 40x20-12	400	420	440	540		220			6,5
EKH 40x20-15	400	420	440	540		220		_	6,5
EKH 50x25-6	500	520	540	640		270			
EKH 50x25-7.5	500	520	540	640	250	270	290	200	7,65
EKH 50x25-9	500	520	540	640		270			7,65
EKH 50x25-10.5	500	520	540	640	250	270	290	200	7,65
EKH 50x25-12	500	520	540	640	250	270	290	200	7,65
EKH 50x25-15	500	520	540	640	250	270	290	200	7,65
EKH 50x25-18	500	520	540	640	250	270	290	200	7,65
EKH 50x25-21	500	520	540	640	250	270	290	200	7,65
EKH 50x30-6	500	520	540	640	300	320	340	200	8,2
EKH 50x30-7.5	500	520	540	640	300	320	340	200	
EKH 50x30-9	500	520	540	640	300	320	340	200	8,2
EKH 50x30-10.5	500	520	540	640	300	320	340	200	8,2
EKH 50x30-12	500	520	540	640	300	320	340	200	8,2
EKH 50x30-15	500	520	540	640	300	320	340	200	8,2
EKH 50x30-18	500	520	540	640	300	320	340	200	8,2
EKH 50x30-21	500	520	540	640	300	320	340	200	8,2
EKH 60x30-9	600	620	640	740	300	320	340	200	9,4
EKH 60x30-12	600	620	640	740	300	320	340	200	9,4
EKH 60x30-15	600	620	640	740	300	320	340	200	9,4
EKH 60x30-18	600	620	640	740	300	320	340	200	9,4
EKH 60x30-21	600	620	640	740	300	320	340	200	9,4
EKH 60x30-24	600	620	640	740	300	320	340	200	9,4
EKH 60x35-9	600	620	640	740	350	370	390	200	9,75
EKH 60x35-12	600	620	640	740	350	370	390	200	9,75
EKH 60x35-15	600	620	640	740	350	370	390	200	9,75
EKH 60x35-18	600	620	640	740	350	370	390	200	9,75
EKH 60x35-21	600	620	640	740	350	370	390	200	9,75
EKH 60x35-24	600	620	640	740	350	370	390	200	9,75
EKH 70x40-18	700	720	740	840	400	420	440	390	14
EKH 70x40-27	700	720	740	840	400	420	440	510	18,5
EKH 70x40-36	700	720	740	840	400	420	440	750	
EKH 80x50-27	800	820	840	940	500	520	540	390	19
EKH 80x50-36	800	820	840	940	500	520	540	510	23,5
EKH 80x50-54	800	820	840	940	500	520	540	750	30
EKH 90x50-45	900	920	940	1040					
EKH 90x50-54	900	920		1040					
EKH 100x50-45	1000	1020	1040	1140	500	520	540	750	33
EKH 100x50-54	1000	1020	1040	1140	500	520	540	750	36

Канальные водяные нагреватели *WKH*

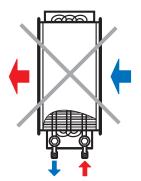
для прямоугольных каналов

Применение

- Для подогрева приточного воздуха в системах вентиляции различных помещений.
- Возможно использование в качестве подогревателя воздуха в приточных или приточно-вытяжных установках.
- □ Устанавливаются только внутри помещений, если в качестве теплоносителя используется вода. Для наружного применения необходимо использовать в нагревателе незамерзающую смесь (например, раствор этиленгликоля).
- Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

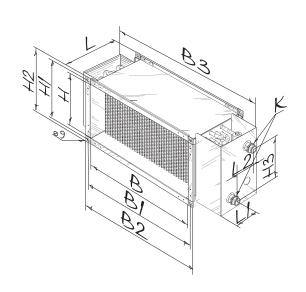

Конструкция

- Корпус изготавливается из оцинкованной стали.
- □ Трубные коллекторы выполнены из медных трубок.
- □ Поверхность теплообмена произведена из алюминиевых пластин.
- □ Оборудованы ниппелем для обезвоздушивания системы.
- □ На выходном коллекторе предусмотрен патрубок для установки погружного датчика измерения температуры или защиты от обмораживания калорифера.
- Выпускаются в двух-, трех- или четырехрядном исполнении трубок.
- □ Допускается эксплуатация при максимальном рабочем давлении 1,6 МПа (16 бар) и максимальной рабочей температуре воды +100 °C.

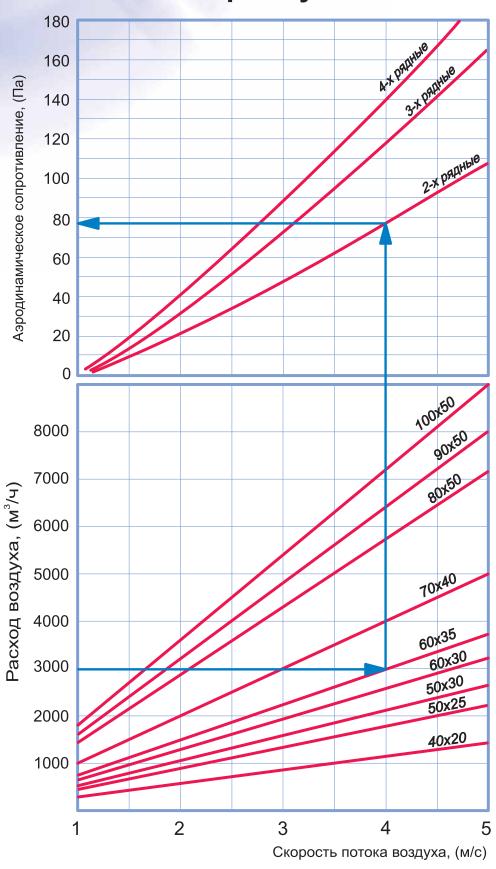

Монтаж

- □ Крепление с прямоугольными каналами при помощи фланцевого соединения.
- □ Допускается установка в любом положении, позволяющем выполнять обезвоздушивание.

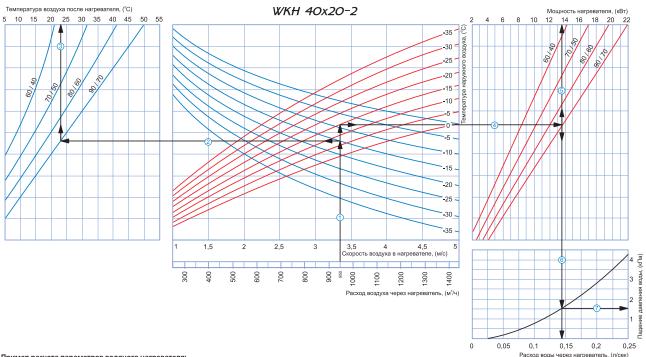
- Перед нагревателем устанавливается фильтр, который защищает от загрязнения нагревательные элементы.
- □ Нагреватель монтируется перед или за вентилятором. Если нагреватель устанавливается за вентилятором, рекомендуется предусмотреть между ними расстояние не менее 1-1,5 м для стабилизации потока воздуха, а также не превышать максимально допустимую температуру воздуха внутри вентилятора.
- □ Подключение калорифера осуществляется по принципу противотока, иначе его производительность снижается на 5-15 %. Все номограммы в каталоге рассчитаны для такого подключения.
- □ Для правильной и безопасной работы нагревателя рекомендуется применять автоматическую систему комплексного управления и защиты:
 - регулировку мощности и температуры нагрева воздуха;
- отслеживание состояния фильтра при помощи датчика дифференциального давления;
- включение системы вентиляции с предварительным прогревом нагревателя;
- применение воздушных заслонок, оборудованных сервоприводом с возвратной пружиной;
 - остановку вентилятора в случае угрозы замерзания нагревателя.


Подключение против направления потока воздуха

Подключение по направлению потока воздуха



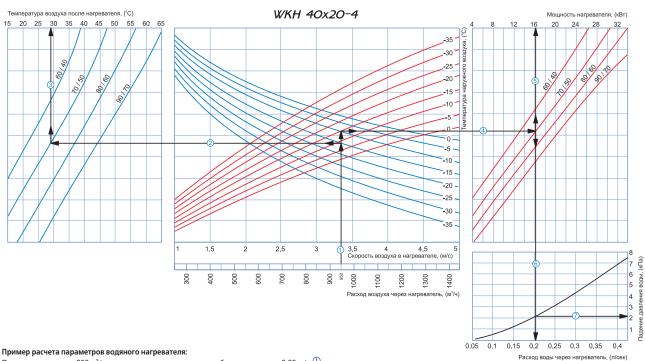
_		Размеры, мм										Кол-во		
Тип	В	B1	B2	В3	Н	H1	H2	Н3	L	L1	L2	K	рядов трубок	Масса, кг
WKH 40x20-2	400	420	440	565	200	220	240	150	200	43	43	G 3/4"	2	7,6
WKH 40x20-4	400	420	440	565	200	220	240	150	200	38	65	G 3/4"	4	8,1
WKH 50x25-2	500	520	540	665	250	270	290	200	200	43	43	G 3/4"	2	15,8
WKH 50x25-4	500	520	540	665	250	270	290	200	200	38	65	G 3/4"	4	16,3
WKH 50x30-2	500	520	540	665	300	320	340	250	200	43	43	G 1"	2	11,5
WKH 50x30-4	500	520	540	665	300	320	340	250	200	38	65	G 1"	4	12,0
WKH 60x30-2	600	620	640	765	300	320	340	250	200	43	43	G 1"	2	21,8
WKH 60x30-4	600	620	640	765	300	320	340	250	200	38	65	G 1"	4	22,3
WKH 60x35-2	600	620	640	765	350	370	390	300	200	43	43	G 1"	2	22,4
WKH 60x35-4	600	620	640	765	350	370	390	300	200	38	65	G 1"	4	22,9
WKH 70x40-2	700	720	740	865	400	420	440	350	200	36	47	G 1"	2	27,8
WKH 70x40-3	700	720	740	865	400	420	440	350	200	42	58	G 1"	3	28,4
WKH 80x50-2	800	820	840	965	500	520	540	450	200	36	47	G 1"	2	36,5
WKH 80x50-3	800	820	840	965	500	520	540	450	200	42	58	G 1"	3	37,2
WKH 90x50-2	900	920	940	1065	500	520	540	450	200	36	47	G 1"	2	40,4
WKH 90x50-3	900	920	940	1065	500	520	540	450	200	42	58	G 1"	3	41,2
WKH 100x50-2	1000	1020	1040	1165	500	520	540	450	200	36	47	G 1"	2	44,3
WKH 100x50-3	1000	1020	1040	1165	500	520	540	450	200	42	58	G 1"	3	45,2



Потери давления воздуха водяных нагревателей WKH

WKH прямоугольные

Пример расчета параметров водяного нагревателя:

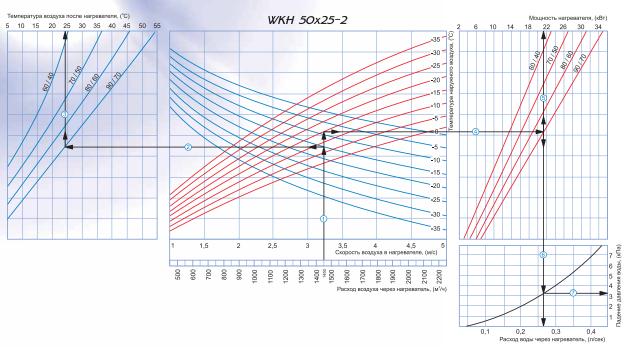

При расходе воздуха 950 м³/ч скорость в сечении нагревателя будет составлять 3,35 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15°С) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (23°C)³.
- нагревателя (23 С) ©.

 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -15°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (13,5 кВт) ⑤.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,14 л/сек).

 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось
- падения давления воды (1,5 кПа).

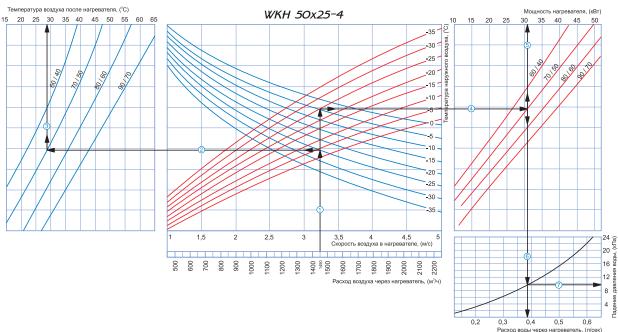


При расходе воздуха 950 м³/ч скорость в сечении нагревателя будет составлять 3,35 м/с \odot .

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15°С) провести влево линию ② до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (29°C) 3.
- 🗷 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия, например, -15°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (16,0 кВт) ⑤.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,2 л/сек).

 Для определения падения давления воды в нагреватель необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось
- падения давления воды (2,1 кПа).

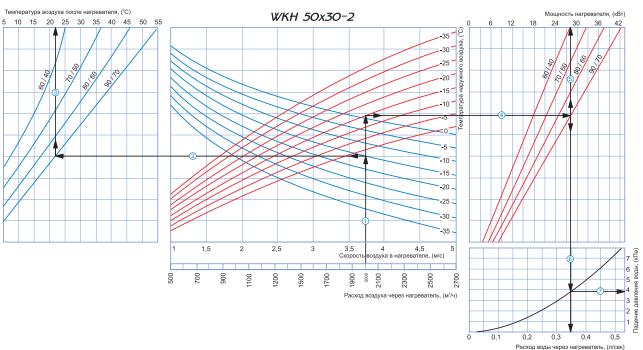


Пример расчета параметров водяного нагревателя:

При расходе воздуха 1450 м³/ч скорость в сечении нагревателя будет составлять 3,2 м/с

О

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15°C) провести влево линию ② до пересечения с температурым перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (24°C) 3.
- 🗷 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия, например, -15°C) провести вправо линию 🏵 до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (21,5 кВт) (5).
- кы пуска пределения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (б) на ось расхода воды через нагреватель (0,27 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии (б) с графиком потери давления и провести перпендикуляр (7) вправо, на ось падения давления воды (3,2 кПа).

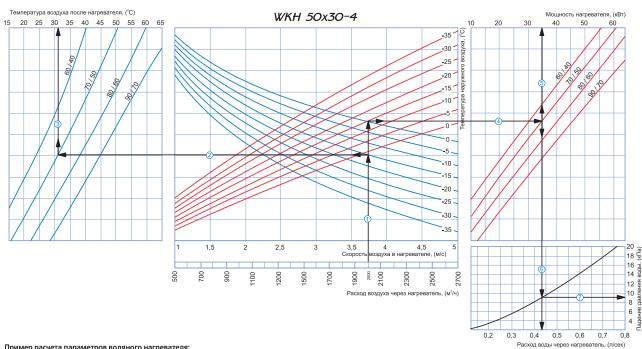

Пример расчета параметров водяного нагревателя:

При расходе воздуха 1450 м³/ч скорость в сечении нагревателя будет составлять 3,2 м/с

О.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -25°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (28°C) 3.
- 🗖 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия, например, -25°C) провести вправо линию 🏵 до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (31,0
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (в) на ось расхода воды через нагреватель (0,38 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии (в) с графиком потери давления и провести перпендикуляр (л) вправо, на ось падения давления воды (9,8 кПа).

Пример расчета параметров водяного нагревателя:

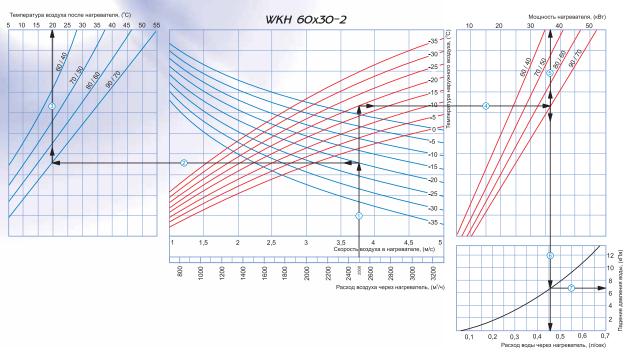

При расходе воздуха 2000 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с ①.

- 🗷 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (нисходящая синяя
- нагревателя (22 С) ©.

 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -15°C) провести вправо линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (28,0 кВт) ③.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,35 л/сек).

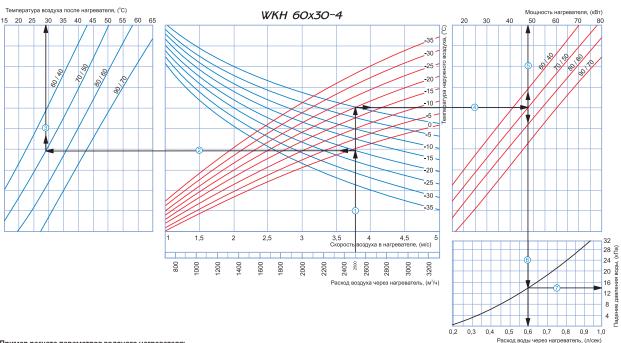
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось
- падения давления воды (3,8 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 2000 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с ①.

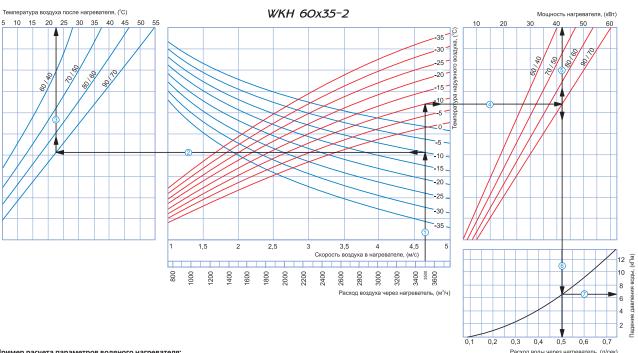
- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (31°C)③.
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -15°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (35,0 кВт) ⑤.


 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,43 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (9,0 кПа).

Пример расчета параметров водяного нагревателя:

При расходе воздуха 2500 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с ①.

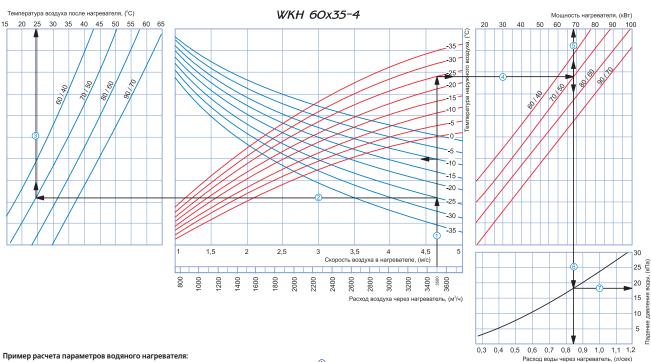
- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурым перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (20°C) 3.
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (37,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр € на ось расхода воды через нагреватель (0.46 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии € с графиком потери давления и провести перпендикуляр € вправо, на ось падения давления воды (6,7 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 2500 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с 🛈 .

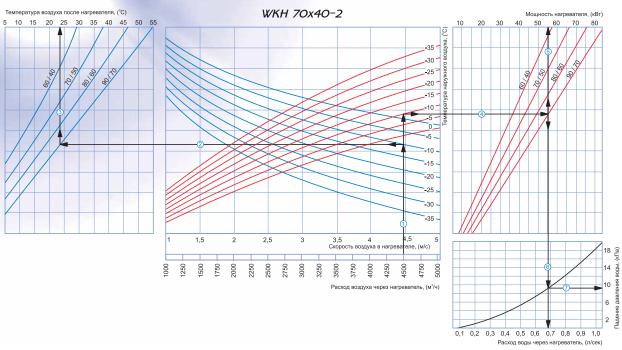
- Чтобы натит температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурыым перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (29°C) 3.
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (48,0
- ты пределения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ® на ось расхода воды через нагреватель (0,6 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ® с графиком потери давления и провести перпендикуляр ⊘ вправо, на ось падения давления воды (14,0 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 3500 м³/ч скорость в сечении нагревателя будет составлять 4,65 м/с $\mathbb O$.

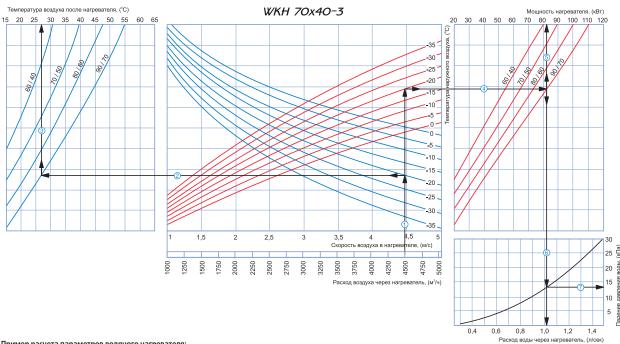
- тили расходе воздуха зозом у 14 короств в сечении на реватели оудет составлять 4,00 мус €.


 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -10°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (22,5°C) 3.
- напревателя (22,0 СУв. В Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -10°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (42,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (6) на ось расхода воды через нагреватель (0,5 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии (6) с графиком потери давления и провести перпендикуляр (7) вправо, на ось падения давления воды (6,5 кПа).

При расходе воздуха 3500 м³/ч скорость в сечении нагревателя будет составлять 4,65 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -25°C) провести влево линию ② до пересечения с температурым перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (24°C)③.
- При того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (восходящая красная линия, например, -25°С) провести вправо линию ⊕ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (68,0 кВт) ⊕.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⊚ на ось расхода воды через нагреватель (0,84 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🗇 вправо, на ось падения давления воды (18,0 кПа).

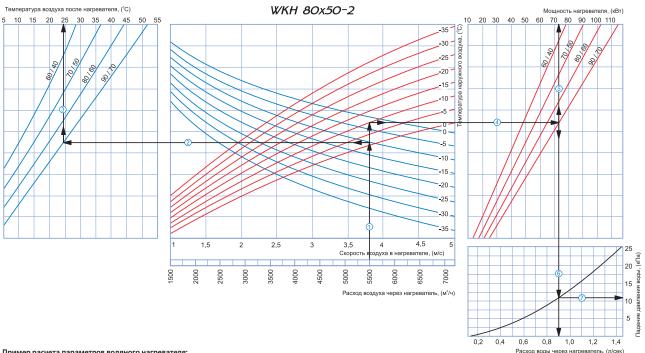

Пример расчета параметров водяного нагревателя:

При расходе воздуха 4500 м³/ч скорость в сечении нагревателя будет составлять 4,45 м/с $\,$ $\,$ $\,$

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -10°C) провести влево линию ② до пересечения с температурным перепадом воздуха после нагревателя (24°C)③.
- Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -10°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (55,0 кВт) ⑤.
- кы) 🤟 .

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр 🌀 на ось расхода воды через нагреватель (0,68 л/сек).

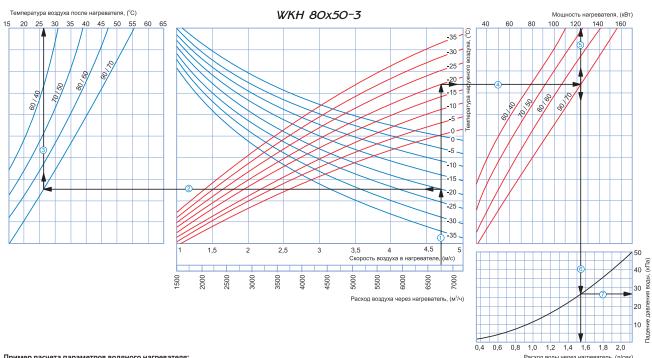
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🜀 с графиком потери давления и провести перпендикуляр 🗇 вправо, на ось падения давления воды (9,2 кПа).



Пример расчета параметров водяного нагревателя:

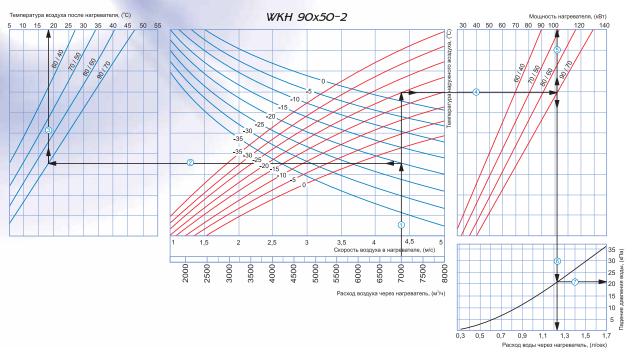
При расходе воздуха 4500 м 3 /ч скорость в сечении нагревателя будет составлять 4,45 м/с \odot .

- тили расхода воздуха чосом при утохорости в реализителя реализителя необходимо от точки пересечения расхода воздуха. Ф с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурым перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (27°C) 3
- Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°C) провести вправо линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (82,0



Пример расчета параметров водяного нагревателя:

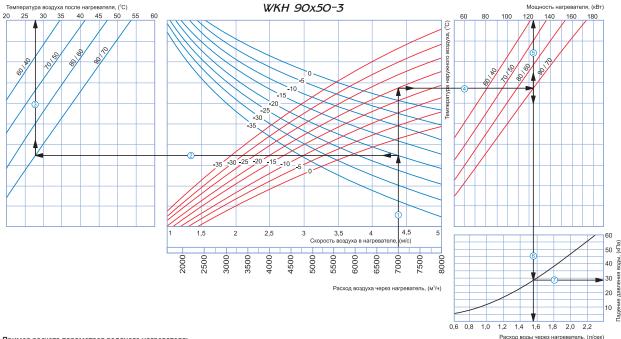
При расходе воздуха 5500 м³/ч скорость в сечении нагревателя будет составлять 3,8 м/с $\, \mathbb{O} \,$


- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя
- напревателя (2-4, 3-7) = ... Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -10°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (73,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (6) на ось расхода воды через нагреватель (0,9 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии (6) с графиком потери давления и провести перпендикуляр (7) вправо, на ось падения давления воды (11,0 кПа).

Пример расчета параметров водяного нагревателя:

При расходе воздуха 6750 м³/ч скорость в сечении нагревателя будет составлять 4,7 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (26°C)③.
- 🗝 Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (восходящая красная линия например, -20°С) провести вправо линию ∰ до пересечения с температурным пересечения реализации в переделения в п
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🗇 вправо, на ось падения давления воды (27,0 кПа).

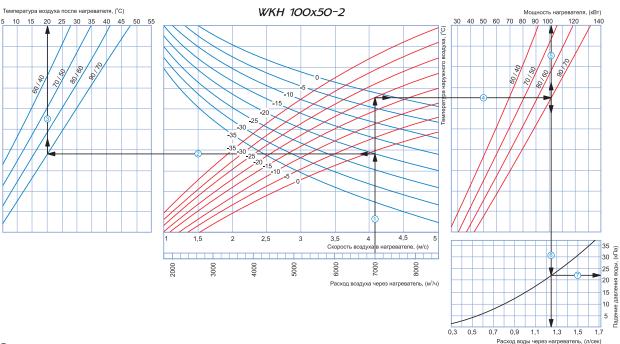


Пример расчета параметров водяного нагревателя:

При расходе воздуха 7000 м³/ч скорость в сечении нагревателя будет составлять 4,4 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (18°C)③.
- Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (102,0
- Пля определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (б) на ось расхода воды через нагреватель (1,23 л/сек).

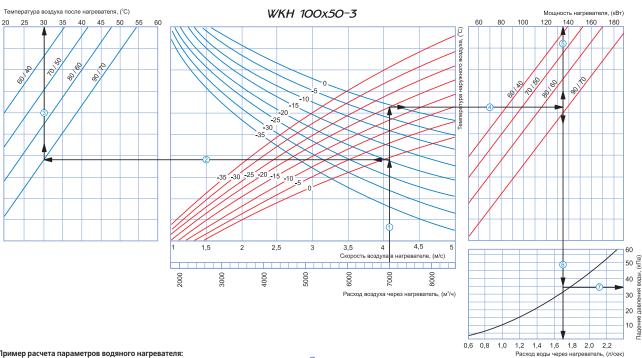
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии (б) с графиком потери давления и провести перпендикуляр (лед) вправо, на ось падения давления воды (21,0 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 7000 м³/ч скорость в сечении нагревателя будет составлять 4,4 м/с \odot .

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурым перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (28°C) 3.
- Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (124,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (6) на ось расхода воды через нагреватель (1,55 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (28,0 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 7000 м³/ч скорость в сечении нагревателя будет составлять 4,1 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°C) провести влево линию ② до пересечения с температурым перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (20°C) 3.
- Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (101,0
- 🗷 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр 🌀 на ось расхода воды через нагреватель (1,25 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑤ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (22,0 кПа).

Пример расчета параметров водяного нагревателя: При расходе воздуха 7000 м 3 /ч скорость в сечении нагревателя будет составлять 4,1 м/с \odot .

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20°С) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (30°С)③.
- патревателя (бо с) (с).

 Для того чтоы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20°С) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (135,0 кВт) ⑤.

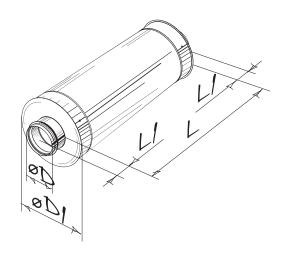
 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,7 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (34,0 кПа).

SDдля круглых каналов

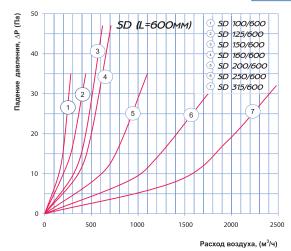
Применение

- □ Для снижения уровня шума, возникающего при работе вентиляционного оборудования, и распространяющегося по воздуховодам вентиляционных систем различных помещений.
- □ Используются совместно со звукоизолированными вентиляторами в помещениях с повышенным требованием к уровню шума вентиляционного оборудования.
- □ Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

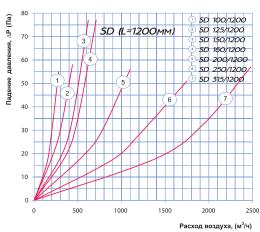
Конструкция


- □ Корпус изготавливается из оцинкованной стали и наполняется негорючим звукопоглощающим материалом с защитным покрытием от выдувания волокон.
- □ Герметичность соединения с воздуховодами обеспечивают соединительные фланцы с резиновым уплотнением.
- Широкий ассортимент типоразмеров с несколькими вариантами длины шумоглушителя.

Монтаж


- □ Монтаж с круглыми воздуховодами при помощи хомутов.
- □ Допускается монтаж шумоглушителя в любом положении.
- ☐ Для достижения большего эффекта поглощения шумоглушители устанавливаются последовательно один за другим.

						_		
					(октавные пол			
	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц
SD 100/600	4	8	10	20	34	30	13	14
SD 100/900	5	10	15	23	44	30	16	15
SD 100/1200	6	11	19	28	50	34	20	18
SD 125/600	3	5	6	15	28	17	10	9
SD 125/900	4	9	12	22	43	22	16	12
SD 125/1200	4	9	16	27	48	27	21	17
SD 150/600	2	4	8	16	32	11	7	7
SD 150/900	3	5	9	18	36	25	13	14
SD 150/1200	4	8	14	25	43	30	18	19
SD 160/600	2	4	8	17	33	11	7	7
SD 160/900	2	5	10	19	37	25	13	15
SD 160/1200	4	10	14	24	42	30	19	20
SD 200/600	2	4	6	10	27	13	7	7
SD 200/900	3	7	11	20	39	23	8	7
SD 200/1200	4	10	14	23	40	26	13	12
SD 250/600	4	5	6	11	22	12	7	6
SD 250/900	4	5	7	16	32	20	12	10
SD 250/1200	4	6	8	17	34	22	14	12
SD 315/600	2	4	5	10	17	9	6	5
SD 315/900	3	5	8	17	30	14	10	8
SD 315/1200	4	7	11	22	36	18	14	10



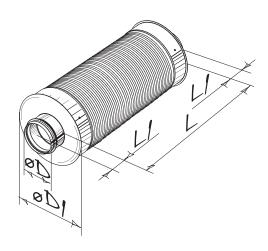
Tue		Разме	ры, мм		Macca,
Тип	ØD	ØD1	L	L1	КГ
SD 100/600	99	200	600	50	2,2
SD 100/900	99	200	900	50	3,2
SD 100/1200	99	200	1200	50	4,3
SD 125/600	124	225	600	50	2,7
SD 125/900	124	225	900	50	4,1
SD 125/1200	124	225	1200	50	5,4
SD 150/600	149	250	600	50	2,8
SD 150/900	149	250	900	50	4,2
SD 150/1200	149	250	1200	50	5,6
SD 160/600	159	260	600	50	3,1
SD 160/900	159	260	900	50	4,6
SD 160/1200	159	260	1200	50	6,2
SD 200/600	199	300	600	50	3,5
SD 200/900	199	300	900	50	5,3
SD 200/1200	199	300	1200	50	7,1
SD 250/600	249	350	600	50	4,2
SD 250/900	249	350	900	50	6,2
SD 250/1200	249	350	1200	50	8,3
SD 315/600	314	415	600	50	4,7
SD 315/900	314	415	900	50	7,1
SD 315/1200	314	415	1200	50	9,4

Шумоглушители *SDF* для круглых каналов

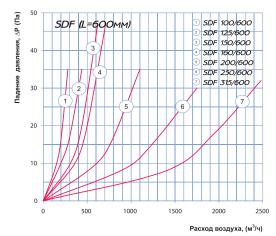
Применение

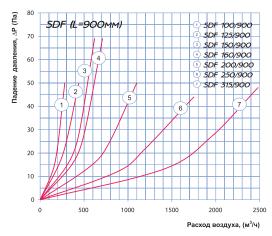
- □ Для снижения уровня шума, возникающего при работе вентиляционного оборудования, и распространяющегося по воздуховодам вентиляционных систем различных помещений.
- □ Используются совместно со звукоизолированными вентиляторами в помещениях с повышенным требованием к уровню шума вентиляционного оборудования.
- Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

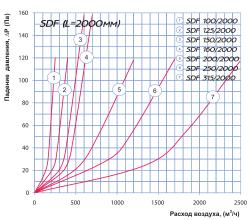
Конструкция


- □ Корпус состоит из наружной и внутренней гибких спиральнонавивных труб из алюминиевого сплава, наполненных негорючим звукопоглощающим материалом.
- □ На внутренней поверхности нанесена перфорация с защитным покрытием, предотвращающим выдувание волокон.
- Широкий ассортимент типоразмеров с несколькими вариантами длины шумоглушителя.

Монтаж


- □ Монтаж с круглыми воздуховодами при помощи хомутов.
- □ Допускается монтаж шумоглушителя в любом положении.
- ☐ Для достижения большего эффекта поглощения шумоглушители устанавливаются последовательно один за другим.
- □ Для предотвращения провисания конструкция шумоглушителя закрепляется не только по краям, но и посередине.


	Снижение уровня шума, дБ (октавные полосы частот, Гц)										
	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц			
SDF 100/600	6	8	13	22	28	34	17	20			
SDF 100/900	8	10	15	25	33	40	21	23			
SDF 100/2000	10	15	24	48	53	51	39	36			
SDF 125/600	4	7	14	20	31	31	13	12			
SDF 125/900	5	9	16	23	36	37	17	16			
SDF 125/2000	7	15	23	47	55	50	28	25			
SDF 150/600	3	7	12	32	40	40	19	20			
SDF 150/900	4	8	14	40	48	49	26	25			
SDF 150/2000	5	10	21	42	50	48	26	25			
SDF 160/600	3	7	12	20	25	24	10	12			
SDF 160/900	3	8	13	21	28	28	13	16			
SDF 160/2000	5	11	20	40	48	48	25	25			
SDF 200/600	2	5	12	20	26	21	10	10			
SDF 200/900	3	6	12	22	28	24	12	13			
SDF 200/2000	4	11	22	42	51	34	19	23			
SDF 250/600	2	3	8	16	22	13	10	10			
SDF 250/900	2	4	9	18	25	16	11	12			
SDF 250/2000	3	6	16	30	39	27	17	22			
SDF 315/600	2	4	9	18	21	12	7	9			
SDF 315/900	2	5	11	21	24	14	8	10			
SDF 315/2000	4	7	17	34	39	24	14	18			



Тип		Размеры, мм								
IMII	ØD	ØD1	L	L1	КГ					
SDF 100/600	99	200	600	50	1,5					
SDF 100/900	99	200	900	50	2,2					
SDF 100/2000	99	200	2000	50	4,8					
SDF 125/600	124	225	600	50	1,8					
SDF 125/900	124	225	900	50	2,7					
SDF 125/2000	124	225	2000	50	6,0					
SDF 150/600	149	250	600	50	1,9					
SDF 150/900	149	250	900	50	2,8					
SDF 150/2000	149	250	2000	50	6,2					
SDF 160/600	159	260	600	50	2,1					
SDF 160/900	159	260	900	50	3,1					
SDF 160/2000	159	260	2000	50	6,8					
SDF 200/600	199	300	600	50	2,4					
SDF 200/900	199	300	900	50	3,5					
SDF 200/2000	199	300	2000	50	7,8					
SDF 250/600	249	350	600	50	2,8					
SDF 250/900	249	350	900	50	4,2					
SDF 250/2000	249	350	2000	50	9,2					
SDF 315/600	314	415	600	50	3,2					
SDF 315/900	314	415	900	50	4,7					
SDF 315/2000	314	415	2000	50	10,4					

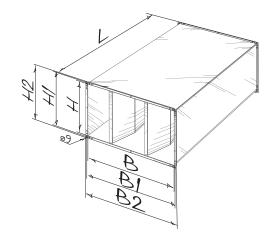
Шумоглушители .SD

для прямоугольных каналов

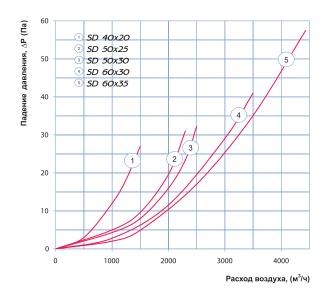
Применение

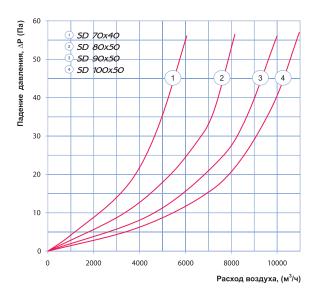
- □ Для снижения уровня шума, возникающего при работе вентиляционного оборудования, и распространяющегося по воздуховодам вентиляционных систем различных помещений.
- □ Используются совместно со звукоизолированными вентиляторами в помещениях с повышенным требованием к уровню шума вентиляционного оборудования.
- □ Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

Конструкция


- Сорпус и оболочки пластин изготовлены из оцинкованной стали.
- □ Пластины наполнены негорючим звукопоглощающим материалом с защитным покрытием, предотвращающим выдувание волокон.

Монтаж


- Монтаж с прямоугольными каналами при помощи фланцевого соединения.
- □ Для максимальной производительности шумопоглощения необходимо предусмотреть перед шумоглушителем прямолинейный участок длиной не менее 1 м.
- ☐ Для достижения большего эффекта поглощения шумоглушители устанавливаются последовательно один за другим.

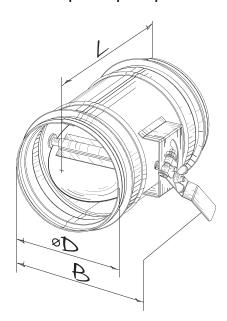

	Снижение уровня шума, дБ (октавные полосы частот, Гц)										
	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц			
SD 40x20	3	7	10	23	27	30	25	22			
SD 50x25	3	6	11	22	26	25	27	22			
SD 50x30	3	6	10	23	24	25	23	18			
SD 60x30	3	6	10	21	24	30	24	17			
SD 60x35	3	5	11	22	25	29	24	21			
SD 70x40	4	7	10	15	22	19	21	18			
SD 80x50	5	6	11	17	21	20	22	20			
SD 90x50	3	6	10	16	20	20	21	15			
SD 100x50	4	6	11	16	21	21	23	17			

Тип		Размеры, мм								
I MII	В	B1	B2	Н	H1	H2	L	КГ		
SD 40x20	400	420	440	200	220	240	950	18,5		
SD 50x25	500	520	540	250	270	290	950	20,5		
SD 50x30	500	520	540	300	320	340	950	24,5		
SD 60x30	600	620	640	300	320	340	950	26,5		
SD 60x35	600	620	640	350	370	390	950	28,7		
SD 70x40	700	720	740	400	420	440	1010	36,7		
SD 80x50	800	820	840	500	520	540	1010	50,0		
SD 90x50	900	920	940	500	520	540	1010	51,7		
SD 100x50	1000	1020	1040	500	520	540	1010	57,3		

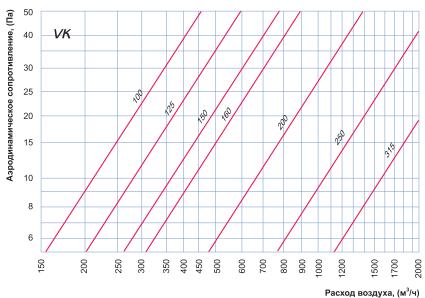
Заслонки регулирующие

для круглых каналов

Применение


- Для ручного регулирования расхода воздуха или перекрытия вентиляционных каналов в системах вентиляции различных помещений.
- Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

Конструкция.


- Корпус и поворотная пластина изготавливаются из оцинкованной стали.
- □ Герметичность соединения с воздуховодами обеспечивают резиновые уплотнители.
- □ Ручная регулировка расхода воздуха осуществляется при помощи ручного регулятора, снабженного рычагом с металлической рукояткой и стопором для фиксации положения поворотных пластин.

Монтаж

□ Крепление осуществляется на круглых воздуховодах при помощи хомутов.

Тип		Macca,		
ΙΝΙΙ	ØD	В	L	КГ
VK 100	99	131	150	0,6
VK 125	124	159	170	0,8
VK 150	149	186	180	0,96
VK 160	159	196	190	1,04
VK 200	199	230	220	1,56
VK 250	249	282	270	2,18
VK 315	314	348	340	3,23

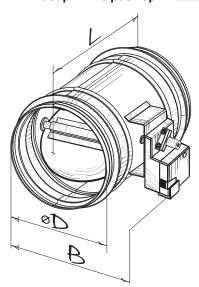
Заслонки регулирующие AVK

для круглых каналов

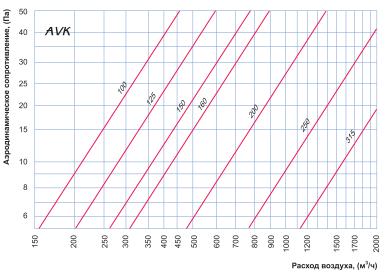
Применение

- Для автоматического регулирования расхода воздуха или перекрытия вентиляционных каналов в системах вентиляции различных помещений.
- Совместимы с круглыми воздуховодами диаметром от 100 до 355 мм.

Конструкция


- Корпус и поворотная пластина изготавливаются из оцинкованной стали.
- □ Герметичность соединения с воздуховодами обеспечивают резиновые уплотнители.
- □ Автоматическое управление регулятором осуществляется при помощи сервопривода, установленного на валу заслонки. 3-х точечная схема обеспечивает управление регулирующей поворотной пластиной, угол поворота которой «max 95°», настраивается с помощью механических ограничителей.

Открытие и закрытие воздушной заслонки обеспечивается управлением по однопроводной схеме. Сервопривод надежен и защищен от перегрузок. Остановка работы происходит автоматически при достижении крайних положений.


□ Возможен перевод управления регулятором в ручной режим.

Монтаж

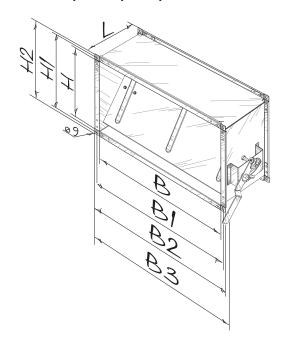
- □ Крепление осуществляется на круглых воздуховодах при помощи хомутов.
- □ Необходимо предусматривать пространство для контрольного доступа к сервоприводу.

Тип		Масса,		
IMII	ØD	В	L	КГ
AVK 100	99	185	150	1,2
AVK 125	124	211	170	1,4
AVK 150	149	237	180	1,6
AVK 160	159	243	190	1,7
AVK 200	199	287	220	2,2
AVK 250	249	339	270	2,8
AVK 315	314	405	340	3,9
AVK 355	348	450	400	5,0

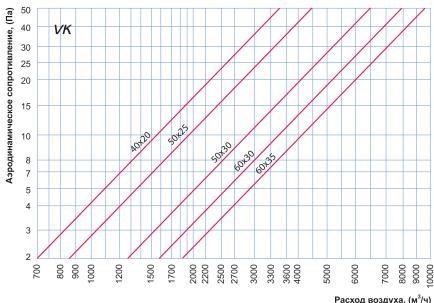
Заслонки регулирующие

для прямоугольных каналов

Применение


- Для ручного регулирования расхода воздуха или перекрытия вентиляционных каналов в системах вентиляции различных помещений.
- Совместимы с прямоугольными воздуховодами сечением от 400х200 до 600х350 мм.

Конструкция


- Корпус и поворотная пластина изготавливаются из оцинкованной стали.
- □ Ручная регулировка расхода воздуха осуществляется при помощи ручного регулятора, снабженного рычагом с металлической рукояткой и стопором для фиксации положения поворотных пластин.

Монтаж

- □ Крепление осуществляется на прямоугольных воздуховодах при помощи фланцевого соединения.
- □ Для монтажа используются оцинкованные болты и скобы, которыми производится крепление торцевых фланцев заслонок к ответным фланцам воздуховодов или других агрегатов вентиляционной системы.

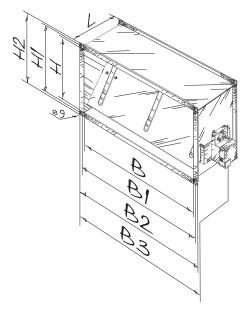
Тип	Размеры, мм									
ТИП	В	B1	B2	В3	Н	H1	H2	L	КГ	
VK 40x20	400	420	440	460	200	220	240	202	3,0	
VK 50x25	500	520	540	560	250	270	290	202	3,8	
VK 50x30	500	520	540	560	300	320	340	202	3,1	
VK 60x30	600	620	640	660	300	320	340	202	4,2	
VK 60x35	600	620	640	660	350	370	390	202	5,1	

Заслонки регулирующие *A VK*

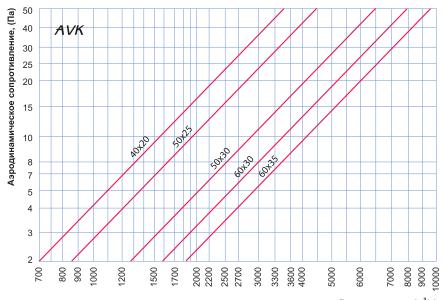
для прямоугольных каналов

Применение

- 🚨 Для автоматического регулирования расхода воздуха или перекрытия вентиляционных каналов в системах вентиляции различных помещений.
- □ Совместимы с прямоугольными воздуховодами сечением от 400х200 до 600х350 мм.


Конструкция

- □ Корпус и поворотная пластина изготавливаются из оцинкованной стали.
- □ Автоматическое управление регулятором осуществляется при помощи сервопривода, установленного на валу заслонки. 3-х точечная схема обеспечивает управление регулирующей поворотной пластиной, угол поворота которой «тах 95°», настраивается с помощью механических ограничителей. Открытие и закрытие воздушной заслонки обеспечивается управлением по однопроводной схеме.
- Сервопривод надежен и защищен от перегрузок. Остановка работы происходит автоматически при достижении крайних положений.


□ Возможен перевод управления регулятором в ручной режим.

Монтаж

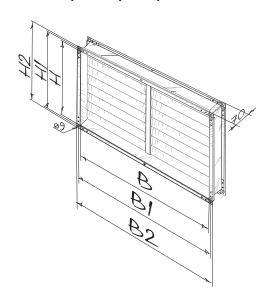
- □ Крепление осуществляется на прямоугольных воздуховодах при помощи фланцевого соединения.
- Для монтажа используются оцинкованные болты и скобы, которыми производится крепление торцевых фланцев заслонок к ответным фланцам воздуховодов или других агрегатов вентиляционной системы.
- □ Необходимо предусматривать пространство для контрольного доступа к сервоприводу.

Тип	Размеры, мм										
IVIII	В	B1	B2	В3	Н	H1	H2	L	КГ		
AVK 40x20	400	420	440	503	200	220	240	202	3,6		
AVK 50x25	500	520	540	603	250	270	290	202	4,4		
AVK 50x30	500	520	540	603	300	320	340	202	4,8		
AVK 60x30	600	620	640	703	300	320	340	202	5,4		
AVK 60x35	600	620	640	703	350	370	390	202	5,8		

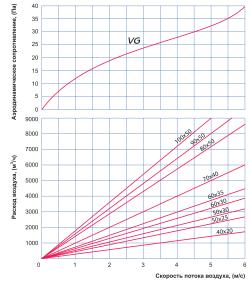
Клапаны гравитационные

для прямоугольных каналов

Применение


- 🗅 Для автоматического перекрытия сечения воздуховода при отключении вентилятора в системах вентиляции различных помещений.
- Имеют гравитационный тип действия.
- □ Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

Конструкция


- □ Корпус изготавливается из оцинкованной стали.
- □ Оснащены легкими гравитационными ламелями из ПВХ на поворотных осях, встроенных во внешнюю рамку.
- □ Ламели открываются под действием потока воздуха и автоматически возвращаются в исходное положение при прекращении его подачи.

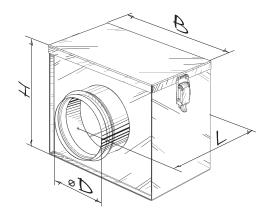
Монтаж

- □ Крепление с прямоугольными каналами вентиляционных систем в горизонтальном положении по длинной стороне корпуса.
- □ Ламели должны иметь возможность самостоятельно двигаться под собственным весом.
- □ При установке клапана в системе вентиляции необходимо учитывать направление потока воздуха.

Тип			Macca,				
I VIII	В	B1	B2	Н	H1	H2	КГ
VG 40x20	400	420	440	200	220	240	1,29
VG 50x25	500	520	540	250	270	290	1,58
VG 50x30	500	520	540	300	320	340	1,83
VG 60x30	600	620	640	300	320	340	2,05
VG 60x35	600	620	640	350	370	390	2,21
VG 70x40	700	720	740	400	420	440	3,0
VG 80x50	800	820	840	500	520	540	3,6
VG 90x50	900	920	940	500	520	540	3,8
VG 100x50	1000	1020	1040	500	520	540	4,0

Клапаны гравитационные *VG*для круглых каналов

Применение


- Для автоматического перекрытия сечения воздуховода при отключении вентилятора в системах вентиляции различных помещений.
- □ Имеют гравитационный тип действия.
- □ Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

Конструкция

- Корпус изготавливается из оцинкованной стали.
- □ Оснащены легкими гравитационными ламелями из ПВХ на поворотных осях, встроенных во внешнюю рамку.
- □ Ламели открываются под действием потока воздуха и автоматически возвращаются в исходное положение при прекращении его подачи.
- □ Патрубки оснащены резиновыми уплотнителями.

Монтаж .

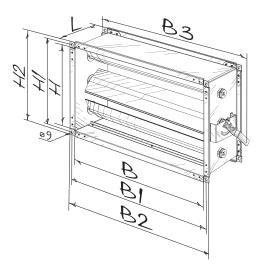
- □ Крепление осуществляется в круглые каналы вентиляционных систем.
- □ Ламели должны иметь возможность самостоятельно двигаться под собственным весом.
- □ При установке клапана в системе вентиляции необходимо учитывать направление потока воздуха.

Тип			Macca,		
I VII I	D	В	Н	L	КГ
VG 100	99	225	216	232	1,814
VG 125	124	225	216	232	1,794
VG 140	139	225	216	232	1,798
VG 150	149	225	216	232	1,774
VG 160	159	225	216	232	1,699
VG 200	199	295	316	232	2,764
VG 250	249	295	316	232	2,624
VG 315	314	365	366	232	3,238

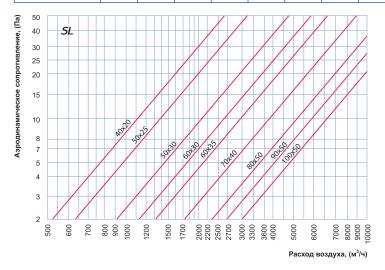
Регуляторы расхода воздуха *SL*

для прямоугольных каналов

Применение


- Для ручного регулирования расхода воздуха или перекрытия вентиляционных каналов систем вентиляции различных помещений.
- Совместимы с прямоугольными воздуховодами сечением от 400x200 до 1000x500 мм.

Конструкция


- □ Представляют собой многостворчатый клапан со встречным вращением поворотных пластин.
- □ Корпус изготавливается из оцинкованной стали.
- □ Поворотные пластины из алюминиевого профиля вращаются при помощи шестеренок.
- □ Ручная регулировка расхода воздуха осуществляется при помощи металлической рукоятки, оснащенной стопором для фиксации положения поворотных пластин.

Монтаж

- □ Крепление с прямоугольными каналами при помощи фланцевого соединения.
- Для монтажа используются оцинкованные болты и скобы, которыми производится крепление торцевых фланцев заслонок к ответным фланцам воздуховодов или других агрегатов вентиляционной системы.

Тип				Разме	ры, мм	1			Macca,
I VIII	В	B1	B2	В3	Н	H1	H2	L	КГ
SL 40x20	400	420	440	475	200	220	240	170	3,5
SL 50x25	500	520	540	575	250	270	290	170	4,2
SL 50x30	500	520	540	575	300	320	340	170	4,9
SL 60x30	600	620	640	675	300	320	340	170	5,4
SL 60x35	600	620	640	675	350	370	390	170	5,7
SL 70x40	700	720	740	775	400	420	440	170	7,7
SL 80x50	800	820	840	875	500	520	540	170	8,8
SL 90x50	900	920	940	975	500	520	540	170	9,6
SL 100x50	1000	1020	1040	1075	500	520	540	170	10,3

Регуляторы расхода воздуха ASL

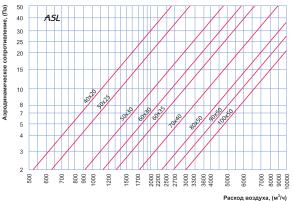
для прямоугольных каналов

Применение

- Для автоматического регулирования расхода воздуха или перекрытия вентиляционных каналов систем вентиляции различных
- Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

Конструкция

- Представляют собой многостворчатый клапан со встречным вращением поворотных пластин.
- □ Поворотные пластины из алюминиевого профиля вращаются при помощи шестеренок.
- □ Корпус изготавливается из оцинкованной стали.
- Автоматическое управление регулятором осуществляется при помощи сервопривода, установленного на валу заслонки. 3-х точечная схема обеспечивает управление регулирующей поворотной пластиной, угол поворота которой «max 95°», настраивается с помощью механических ограничителей. Открытие и закрытие воздушной заслонки обеспечивается управлением по однопроводной схеме.
- Сервопривод надежен и защищен от перегрузок. Остановка работы происходит автоматически при достижении крайних положений.


□ Предусмотрен перевод управления регулятора в ручной режим путем нажатия и удержания кнопки на корпусе сервопривода, которая выводит зубчатый редуктор из зацепления.

Монтаж

- □ Крепление с прямоугольными каналами при помощи фланцевого соединения.
- Для монтажа используются оцинкованные болты и скобы, которыми производится крепление торцевых фланцев заслонок к ответным фланцам воздуховодов или других агрегатов вентиляционной системы.
- □ Необходимо предусматривать пространство для контрольного доступа к сервоприводу.

Тип				Разме	оы, мм	l			Macca,
ГИП	В	B1	B2	В3	Н	H1	H2	L	КГ
ASL 40x20	400	420	440	515	200	220	240	170	3,5
ASL 50x25	500	520	540	615	250	270	290	170	4,2
ASL 50x30	500	520	540	615	300	320	340	170	4,9
ASL 60x30	600	620	640	715	300	320	340	170	5,4
ASL 60x35	600	620	640	715	350	370	390	170	5,7
ASL 70x40	700	720	740	815	400	420	440	170	8,0
ASL 80x50	800	820	840	915	500	520	540	170	9,2
ASL 90x50	900	920	940	1015	500	520	540	170	9,9
ASL 100x50	1000	1020	1040	1115	500	520	540	170	10,7

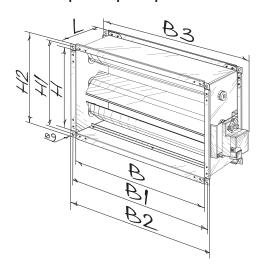
Регуляторы расхода воздуха ASLF

для прямоугольных каналов

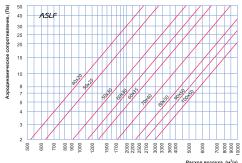
Применение

- Для автоматического регулирования расхода воздуха или перекрытия вентиляционных каналов в системах вентиляции различных помещений.
- □ Для управления воздушными заслонками в системах вентиляции и кондиционирования, выполняющими охранные функции, например, защита от замораживания, задымления и т.п.
- □ Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

Конструкция


- □ Представляют собой многостворчатый клапан со встречным вращением поворотных пластин.
- □ Поворотные пластины из алюминиевого профиля вращаются при помощи шестеренок.
- Корпус изготавливается из оцинкованной стали.
- Автоматическое управление регулятором осуществляется при помощи сервопривода, установленного на валу заслонки. Одновременно с поворотом воздушной заслонки в нормальное рабочее положение, взводится возвратная пружина. Заслонка автоматически возвращается в охранное положение, обеспечивая быстрое перекрытие вентиляционного канала, за счет энергии пружины в случае обесточивания сети. Управление регулирующей поворотной пластиной, угол поворота которой «тах 95°», настраивается с помощью механических ограничителей. Открытие

и закрытие воздушной заслонки обеспечивается управлением по однопроводной схеме.


□ Сервопривод надежен и защищен от перегрузок. Остановка работы происходит автоматически при достижении крайних положений.

Монтаж

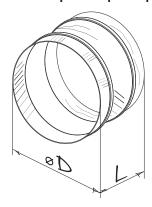
- □ Крепление с прямоугольными каналами при помощи фланцевого соединения.
- Для монтажа используются оцинкованные болты и скобы, которыми производится крепление торцевых фланцев заслонок к ответным фланцам воздуховодов или других агрегатов вентиляционной системы.
- □ Необходимо предусматривать пространство для контрольного доступа к сервоприводу.

Тип	Размеры, мм								Macca,
IVIII	В	В1	B2	В3	Н	H1	H2	L	КГ
ASLF 40x20	400	420	440	530	200	220	240	170	4,5
ASLF 50x25	500	520	540	630	250	270	290	170	5,2
ASLF 50x30	500	520	540	630	300	320	340	170	5,9
ASLF 60x30	600	620	640	730	300	320	340	170	6,4
ASLF 60x35	600	620	640	730	350	370	390	170	6,7
ASLF 70x40	700	720	740	830	400	420	440	170	9,1
ASLF 80x50	800	820	840	930	500	520	540	170	10,2
ASLF 90x50	900	920	940	1030	500	520	540	170	11
ASLF 100x50	1000	1020	1040	1030	500	520	540	170	11,7

Гибкие виброгасящие вставки *EVA*

для круглых каналов

Применение


- Для нейтрализации передачи вибраций от вентиляторов или вентиляционных установок к воздуховоду в системах вентиляции различных помещений
- Для частичной компенсации температурной деформации в трассе воздуховода.
- □ Совместимы с круглыми воздуховодами диаметром от 100 до 500 мм.

Конструкция .

- Два фланца изготавливаются из оцинкованной стали.
- □ Соединительный виброизолирующий материал выполнен из полиэтиленовой ленты, укрепленной полиамидной текстильной нитью.
- □ Вставки не являются несущей конструкцией и не предназначены для механической нагрузки.

Монтаж

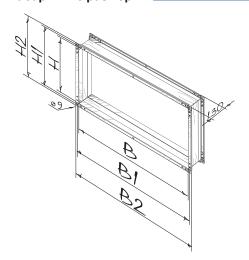
□ Гибкие вставки крепятся к воздуховодам при помощи хомутов.

Тип	Разме	Macca,	
I VIII	ØD	L	КГ
EVA 100	101	130	0,14
EVA 125	126	130	0,17
EVA 150	151	130	0,21
EVA 160	161	130	0,22
EVA 200	201	130	0,28
EVA 250	251	130	0,35
EVA 315	316	130	0,44
EVA 355	356	130	0,50
EVA 400	401	130	0,56
EVA 450	451	130	0,64
EVA 500	501	130	0,71

Гибкие виброгасящие вставки EVA

для прямоугольных каналов

Применение


- □ Для нейтрализации передачи вибраций от вентиляторов или вентиляционных установок к воздуховоду в системах вентиляции различных помещений...
- Для частичной компенсации температурной деформации в трассе воздуховода.
- □ Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

Конструкция

- □ Два фланца изготавливаются из оцинкованной стали.
- □ Соединительный виброизолирующий материал выполнен из полиэтиленовой ленты, укрепленной полиамидной текстильной нитью.
- □ Вставки не являются несущей конструкцией и не предназначены для механической нагрузки.

Монтаж

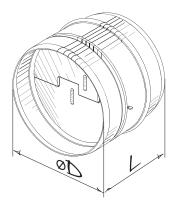
Для монтажа используются оцинкованные болты и скобы, которыми производится крепление торцевых фланцев вставок к ответным фланцам воздуховодов или других агрегатов вентиляционной системы.

Тип		Macca,					
IVIII	В	B1	B2	Н	H1	H2	КГ
EVA 40x20	400	420	440	200	220	240	1,1
EVA 50x25	500	520	540	250	270	290	1,4
EVA 50x30	500	520	540	300	320	340	1,6
EVA 60x30	600	620	640	300	320	340	1,82
EVA 60x35	600	620	640	350	370	390	1,95
EVA 70x40	700	720	740	400	420	440	2,4
EVA 80x50	800	820	840	500	520	540	2,8
EVA 90x50	900	920	940	500	520	540	3,0
EVA 100x50	1000	1020	1040	500	520	540	3,2

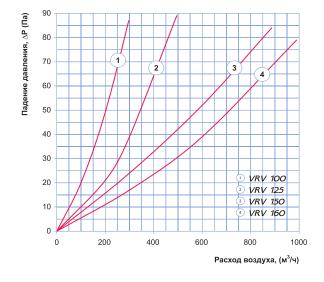
Обратные клапаны VRV

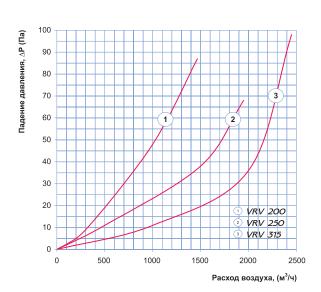
для круглых каналов

Применение


- Для автоматического перекрытия воздуховода и предотвращения движения воздуха в обратном направлении при выключенной системе вентиляции различных помещений.
- □ Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

Конструкция


- Корпус изготавливается из оцинкованной стали.
- □ Оснащены двумя пружинными лепестками-лопастями, изготовленными из листового алюминия.
- Лопасти открываются давлением воздушного потока и закрываются пружиной.


Монтаж

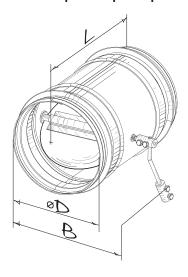
- $lue{}$ Крепление с круглыми каналами вентиляционных систем при помощи хомутов.
- Ось поворота лепестков должна быть расположена вертикально.
- □ При установке клапана в системе вентиляции необходимо учитывать направление потока воздуха.

Тип	Размер	Magaz KE		
I NIII	ØD	L	Масса, кг	
VRV 100	99	80	0,18	
VRV 125	124	100	0,27	
VRV 150	149	115	0,38	
VRV 160	159	120	0,42	
VRV 200	199	145	0,63	
VRV 250	249	165	0,90	
VRV 315	314	190	1,31	

Обратные клапаны VRVS

для круглых каналов

Применение


- Для автоматического перекрытия воздуховода и предотвращения движения воздуха в обратном направлении при выключенной системе вентиляции различных помещений.
- □ Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

Конструкция

- □ Корпус и поворотная пластина гравитационного типа изготавливаются из оцинкованной стали.
- □ Герметичность соединения с воздуховодами обеспечивают резиновые уплотнители.
- Пластина клапана открывается под действием потока воздуха и автоматически возвращается в исходное положение при прекращении его подачи.
- □ Применяется ручная рукоятка клапана, оснащенная противовесом, при помощи которого регулируется чувствительность открытия-закрытия клапана.

Монтаж

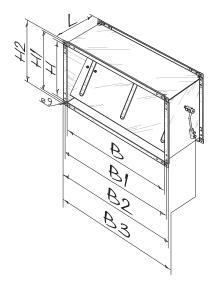
- □ Крепление с круглыми каналами вентиляционных систем при помощи хомутов.
- Пластина должна иметь возможность самостоятельно двигаться под собственным весом.
- □ При установке клапана в системе вентиляции необходимо учитывать направление потока воздуха.

Тип		Размеры, мм				
ГИП	ØD	В	L	КГ		
VRVS 100	99	139	150	0,65		
VRVS 125	124	162	170	0,81		
VRVS 150	149	194	180	0,97		
VRVS 160	159	204	190	1,06		
VRVS 200	199	238	220	1,57		
VRVS 250	249	290	270	2,2		
VRVS 315	314	356	340	3,24		

Обратные клапаны VRVS

для прямоугольных каналов

Применение


- Для автоматического перекрытия воздуховода и предотвращения движения воздуха в обратном направлении при выключенной системе вентиляции в различных помещениях.
- □ Совместимы с прямоугольными воздуховодами сечением от 400х200 до 600х350 мм.

Конструкция

- □ Корпус и поворотная пластина гравитационного типа изготавливаются из оцинкованной стали.
- □ Пластина клапана открывается под действием потока воздуха и автоматически возвращается в исходное положение при прекращении его подачи.
- □ Применяется ручная рукоятка клапана, оснащенная противовесом, при помощи которого регулируется чувствительность открытия-закрытия клапана.

Монтаж

- □ Крепление с прямоугольными каналами вентиляционных систем в горизонтальном положении по длинной стороне корпуса.
- Пластина должна иметь возможность самостоятельно двигаться под собственным весом.
- □ При установке клапана в системе вентиляции необходимо учитывать направление потока воздуха.

Тип	Размеры, мм								Масса,
ТИП	В	B1	B2	В3	Н	H1	H2	L	КГ
VRVS 40x20	400	420	440	461	200	220	240	202	2,9
VRVS 50x25	500	520	540	561	200	270	290	202	3,73
VRVS 50x30	500	520	540	561	300	320	340	202	4,1
VRVS 60x30	600	620	640	661	300	320	340	202	4,64
VRVS 60x35	600	620	640	661	350	370	390	202	5,03

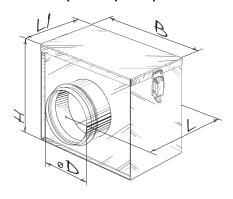
Кассетные воздушные фильтры KFBK

для круглых каналов

Применение

- 🔲 Для очистки приточного или вытяжного воздуха в системах вентиляции и кондиционирования различных помещений.
- □ Предназначены для защиты от запыления воздуховодов, теплообменников, вентиляторов, приборов автоматики и другого вентиляционного оборудования.
- 🔲 Предотвращают загрязнение стен и потолков около воздухораспределительных устройств.
- Могут устанавливаться в качестве первой ступени очистки перед более эффективными фильтрами.
- Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

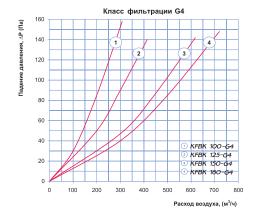
Конструкция

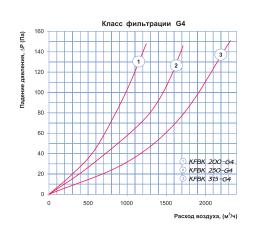

- □ Корпус изготавливается из оцинкованной стали.
- □ Герметичность соединения фильтр-бокса с воздуховодами обеспечивают соединительные фланцы с резиновым уплотнением.
- □ Оснащены плоским фильтрующим элементом из синтетического нетканого полотна с классом очистки G4.
- Фильтрующий элемент фиксируется на каркасе из стальной рамы.
- □ Быстрый доступ к сменному фильтрующему элементу обеспечивают рычажные замки на откидной крышке фильтра.

Монтаж

- □ Крепление с круглыми воздуховодами при помощи хомутов.
- □ Допускается монтаж фильтра в любом положении.
- □ Необходимо предусматривать дополнительное пространство для свободного сервисного доступа к фильтру.

Принадлежности


□ Наличие сменных плоских фильтрующих элементов из синтетического нетканого полотна серии FP-KFBK с классом очистки G4.



Тип		Размеры, мм					
IVIII	ØD	В	Н	L	L1	КГ	
KFBK 100	99	210	175	215	123	1,4	
KFBK 125	124	220	209	235	143	1,7	
KFBK 150	149	270	237	250	158	2,5	
KFBK 160	159	270	237	250	158	2,3	
KFBK 200	199	320	279	275	183	3,1	
KFBK 250	249	370	327	325	233	4,5	
KFBK 315	314	430	392	425	333	6,7	

Сменный фильтр FP-KFBK

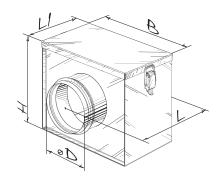
Кассетные воздушные фильтры KFBV

для круглых каналов

Применение

- Для очистки приточного или вытяжного воздуха в системах вентиляции и кондиционирования различных помещений.
- □ Предназначены для защиты от запыления воздуховодов, теплообменников, вентиляторов, приборов автоматики и другого вентиляционного оборудования.
- Предотвращают загрязнение стен и потолков около воздухораспределительных устройств.
- Могут устанавливаться в качестве первой ступени очистки перед более эффективными фильтрами.
- Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

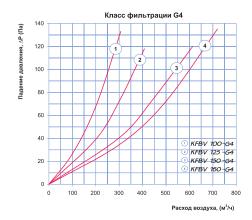
Конструкция

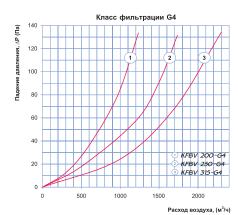

- □ Корпус изготавливается из оцинкованной стали.
- □ Герметичность соединения фильтр-бокса с воздуховодами обеспечивают соединительные фланцы с резиновым уплотнением.
- □ Оснащены фильтрующим элементом V-образной формы с увеличенной площадью фильтрации из синтетического нетканого полотна с классом очистки G4.
- Фильтрующий элемент фиксируется на каркасе из стальной рамы.
- □ Быстрый доступ к сменному фильтрующему элементу обеспечивают рычажные замки на откидной крышке фильтра.

Монтаж

- □ Крепление с круглыми воздуховодами при помощи хомутов.
- □ Допускается монтаж фильтра в любом положении.
- □ Необходимо предусматривать дополнительное пространство для свободного сервисного доступа к фильтру.

Принадлежности


□ Наличие сменных фильтрующих элементов V-образной формы из синтетического нетканого полотна серии FP-KFBV с классом очистки G4.



Тип		Размеры, мм						
IVIII	ØD	В	Н	L	L1	КГ		
KFBV 100	99	233	175	215	123	1,4		
KFBV 125	124	243	209	235	143	1,7		
KFBV 150	149	293	237	250	158	2,2		
KFBV 160	159	293	237	250	158	2,2		
KFBV 200	199	343	279	275	183	3,1		
KFBV 250	249	393	327	325	233	4,2		
KFBV 315	314	453	392	425	333	6,3		

Карманные воздушные фильтры *KFBT*

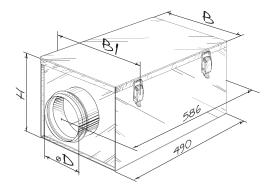
для круглых каналов

Применение

- 🔲 Для очистки приточного или вытяжного воздуха в системах вентиляции и кондиционирования различных помещений.
- □ Предназначены для защиты от запыления воздуховодов, теплообменников, вентиляторов, приборов автоматики и другого вентиляционного оборудования.
- □ Предотвращают загрязнение стен и потолков около воздухораспределительных устройств.
- Могут устанавливаться в качестве первой ступени очистки перед более эффективными фильтрами.
- Совместимы с круглыми воздуховодами диаметром от 100 до 315 мм.

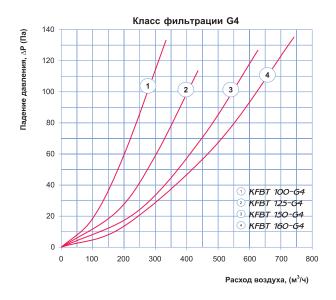
Конструкция

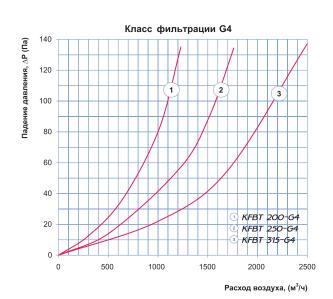
- Корпус изготавливается из оцинкованной стали.
- □ Герметичность соединения фильтр-бокса с воздуховодами обеспечивают соединительные фланцы с резиновым уплотнением.
- □ Оснащены фильтрующим элементом карманного типа из синтетического нетканого полотна с классом очистки G4, F5, F7.
- Фильтрующий элемент фиксируется на каркасе из стальной рамы.
- □ Быстрый доступ к сменному фильтрующему элементу обеспечивают рычажные замки на откидной крышке фильтра.

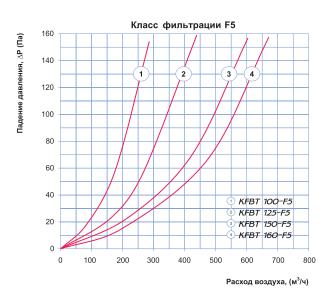

Монтаж

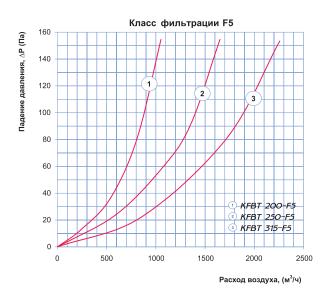
- Крепление с круглыми воздуховодами при помощи хомутов.
- Допускается монтаж фильтра в любом положении.

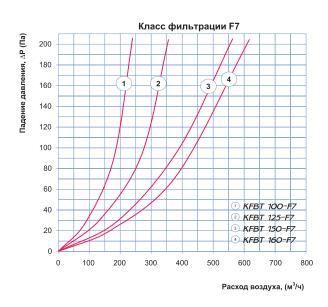
- При вертикальном монтаже воздушный поток должен быть направлен вниз, чтобы карманы фильтра не сминались.
- □ Необходимо предусматривать дополнительное пространство для свободного сервисного доступа к фильтру.

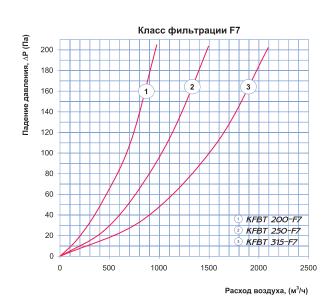

Принадлежности


□ Наличие сменных фильтрующих элементов карманного типа из синтетического нетканого полотна серии FP-KFBT с классом очистки G4, F5, F7.




Тип	Размеры, мм					
I VIII	ØD	В	B1	Н	КГ	
KFBT 100	99	210	230	170	2,41	
KFBT 125	124	220	240	206	2,69	
KFBT 150	149	270	290	236	3,20	
KFBT 160	159	270	290	236	3,26	
KFBT 200	199	320	340	276	3,76	
KFBT 250	249	370	390	386	4,39	
KFBT 315	314	430	450	390	5,17	





Карманные воздушные фильтры *KFBT*

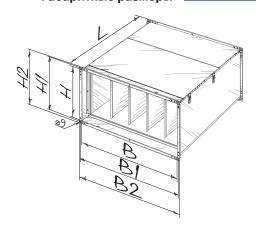
для прямоугольных каналов

Применение

- 🔲 Для очистки приточного или вытяжного воздуха в системах вентиляции и кондиционирования различных помещений.
- □ Предназначены для защиты от запыления воздуховодов, теплообменников, вентиляторов, приборов автоматики и другого вентиляционного оборудования.
- 🔲 Предотвращают загрязнение стен и потолков около воздухораспределительных устройств.
- Могут устанавливаться в качестве первой ступени очистки перед более эффективными фильтрами.
- Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

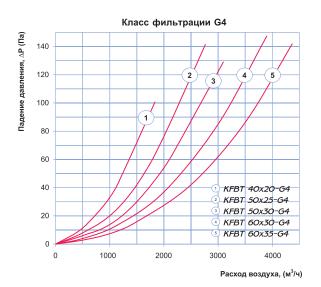
Конструкция

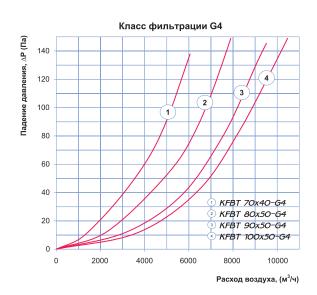
- □ Корпус изготавливается из оцинкованной стали.
- □ Оснащены фильтрующим элементом карманного типа из синтетического нетканого полотна с классом очистки G4, F5, F7.
- Фильтрующий элемент фиксируется на каркасе из стальной рамы.
- □ Быстрый доступ к сменному фильтрующему элементу обеспечивают рычажные замки на откидной крышке фильтра.

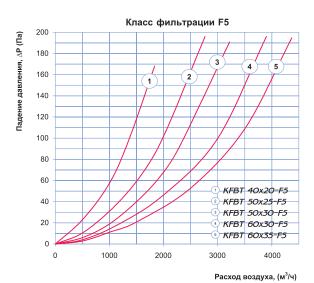

Монтаж

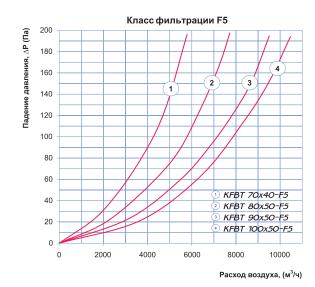
 Крепление с прямоугольными воздуховодами при помощи фланцевого соединения.

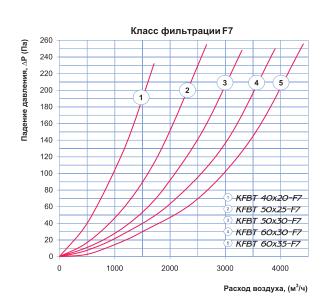
- □ Допускается монтаж фильтра в любом положении.
- □ При вертикальном монтаже воздушный поток должен быть направлен вниз, чтобы карманы фильтра не сминались.
- □ Необходимо предусматривать дополнительное пространство для свободного сервисного доступа к фильтру.

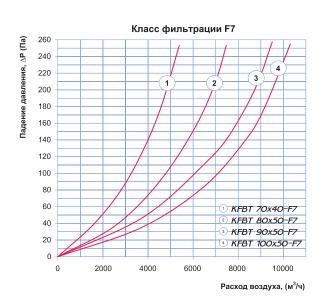

Принадлежности


□ Наличие сменных фильтрующих элементов карманного типа из синтетического нетканого полотна серии FP-KFBT с классом очистки G4, F5, F7.




Тип		Масса,						
іип	В	B1	B2	Н	H1	H2	L	КГ
KFBT 40x20	400	420	440	200	220	240	500	6,2
KFBT 50x25	500	520	540	250	270	290	600	7,8
KFBT 50x30	500	520	540	300	320	340	600	8,3
KFBT 60x30	600	620	640	300	320	340	600	8,9
KFBT 60x35	600	620	640	350	370	390	600	9,5
KFBT 70x40	700	720	740	400	420	440	720	16,2
KFBT 80x50	800	820	840	500	520	540	800	20,4
KFBT 90x50	900	920	940	500	520	540	800	21,7
KFBT 100x50	1000	1020	1040	500	570	540	800	23,5





Кассетные воздушные фильтры KFBK

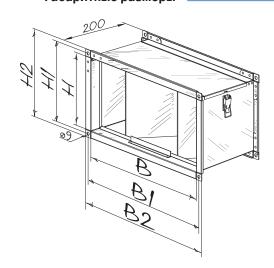
для прямоугольных каналов

Применение

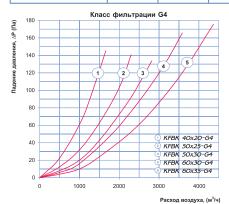
- 📮 Для очистки приточного или вытяжного воздуха в системах вентиляции и кондиционирования различных помещений.
- □ Предназначены для защиты от запыления воздуховодов, теплообменников, вентиляторов, приборов автоматики и другого вентиляционного оборудования.
- □ Предотвращают загрязнение стен и потолков около воздухораспределительных устройств.
- Могут устанавливаться в качестве первой ступени очистки перед более эффективными фильтрами.
- Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

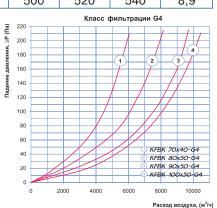
Конструкция

- Корпус изготавливается из оцинкованной стали.
- □ Оснащены фильтрующим элементом из синтетического нетканого полотна с классом очистки G4.
- □ Фильтрующий элемент изогнут в несколько волн для увеличения площади фильтрации и защищен металлической сеткой от деформации воздушным потоком.
- □ Быстрый доступ к сменному фильтрующему элементу обеспечивают рычажные замки на откидной крышке фильтра.


Монтаж

- □ Крепление с прямоугольными каналами при помощи фланцевого соединения.
- Монтируются перед калорифером и вентилятором по ходу движения воздуха.
- □ Необходимо предусматривать дополнительное пространство для свободного сервисного доступа к фильтру.

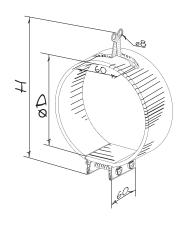

Принадлежности


□ Наличие сменных фильтрующих элементов из синтетического нетканого полотна серии FP-KFBK с классом очистки G4.

Тип	Размеры, мм								
ГИП	В	B1	B2	Н	H1	H2	КГ		
KFBK 40x20	400	420	440	200	220	240	2,4		
KFBK 50x25	500	520	540	250	270	290	4,1		
KFBK 50x30	500	520	540	300	320	340	4,4		
KFBK 60x30	600	620	640	300	320	340	5,2		
KFBK 60x35	600	620	640	350	370	390	5,8		
KFBK 70x40	700	720	740	400	420	440	6,7		
KFBK 80x50	800	820	840	500	520	540	7,9		
KFBK 90x50	900	920	940	500	520	540	8,4		
KFBK 100x50	1000	1020	1040	500	520	540	8.9		

Хомуты *KZ*для круглых каналов

Применение


- Для надежного соединения элементов вентиляционной системы различных помещений
- Совместимы с элементами круглого сечения диаметром от 100 до 315 мм.

Конструкция

- □ Изготавливаются из полосы оцинкованной стали.
- □ Изнутри уплотнены микропористой резиной для поглощения вибраций.

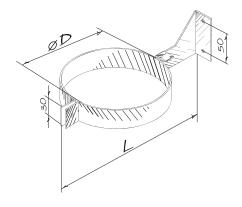
Монтаж _

- □ Крепление осуществляется на круглые элементы вентиляционных систем.
- □ Круглые элементы вентиляционных систем фиксируются хомутом при помощи двух болтов.

Тип	Разме	Macca,	
ГИП	ØD	Н	КГ
KZ 100	100	172	0,206
KZ 125	125	198	0,232
KZ 150	150	224	0,296
KZ 160	160	232	0,358
KZ 200	200	274	0,42
KZ 250	250	326	0,55
KZ 315	315	380	0,65

Хомуты *КZ*Н для круглых каналов

Применение


- Для надежного крепления элементов вентиляционной системы различных помещений.
- □ Совместимы с элементами круглого сечения диаметром от 100 до 315 мм.

Конструкция .

- □ Изготавливаются из полосы оцинкованной стали.
- Изнутри уплотнены микропористой резиной для поглощения вибраций
- Оснащены монтажным кронштейном для возможности крепления на стену или потолок.

Монтаж

- □ Крепление осуществляется на круглые элементы вентиляционных систем.
- □ Круглые элементы вентиляционных систем фиксируются хомутом при помощи болта.
- □ Для крепления хомутов на стену или потолок используется монтажный кронштейн, который крепится при помощи дюбелей.

Размеры, мм		Macca,
ØD	L	КГ
100	204	0,21
125	229	0,22
150	254	0,25
160	264	0,26
200	304	0,31
250	354	0,35
315	419	0,42
	ØD 100 125 150 160 200 250	ØD L 100 204 125 229 150 254 160 264 200 304 250 354

Блок управления бытовыми вентиляторами MCD60/0.3

Применение

- 💶 Для автоматизации системы управления работой бытовых вентиляторов.
- 📮 Включает в себя автоматические функции управления с применением таймера, датчика влажности, фотодатчика, датчика движения.

Конструкция

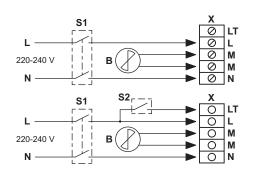
- □ Корпус блока управления изготавливается из высококачественного пластика.
- Лицевая панель оснащена индикаторными лампами, которые сигнализируют об активации режимов блока управления.
- Оборудован шнурковым выключателем.
- Индекс защиты IP34.

Управление

- Установка автоматических функций осуществляется при помощи встроенных переключателей.
- Возможно управление одновременно несколькими вентиляторами, если общий потребляемый ток не превышает предельно допустимой величины тока блока управления

Монтаж

- □ Блок управления может устанавливается внутри помещений на стене возле вентилятора или на некотором расстоянии от него.
- При выборе места монтажа необходимо учитывать зону чувствительности датчика движения, планировку мебели и пути движения людей.


Функции управления:

- □ Таймер задержки: позволяет вентилятору продолжить работу после выключения в течение установленного времени от 5 секунд до 30 минут.
- □ Таймер циклической работы: позволяет устанавливать включение/выключение и время работы вентилятора с цикличными временными интервалами от 5 секунд до 30 минут.

- □ Датчик контроля влажности: позволяет задать индивидуальный уровень влажности, после превышения значения которого происходит автоматическое включение вентилятора с последующим автоматическим выключением при нормализации уровня влажности.
- □ Датчик освещенности: благодаря встроенному фотореле позволяет установить автоматическое включение вентилятора в зависимости от освещения. Доступно два режима работы. «Режим темно»: блок управления включает вентилятор после выключения освещения в помещении. Длительность работы задается в пределах от 5 сек. до 30 мин. Порог срабатывания фотдатчика задается при помощи регулятора.
- «Режим светло»: блок управления включает вентилятор после включения освещения в помещении. После выключения освещения вентилятор продолжает работать и отключается по таймеру задержки выключения, который можно регулировать в пределах от 5 сек. до 30 минут. Если освещение в помещении остается включенным более 60 минут, то вентилятор отключается. Порог срабатывания фотодатчика задается при помощи регулятора.
- □ Датчик движения: позволяет автоматически включать вентилятор при появлении людей в пределах зоны чувствительности датчика (расстояние 5 м, угол обзора 130°). После прекращения движения блок управления отключит вентилятор по таймеру задержки отключения, который можно отрегулировать в пределах от 5 секунд до 30 минут.

Схема подключения блока управления

В - вентилятор; S2 - внешний выключатель; S1 - автоматический выключатель; X - входной клеммник БУ.

	MCD 60/0.3
Напряжение в сети, В / 50 Гц	1~230
Максимальная мощность нагрузки, Вт	60
Максимальный ток нагрузки, А	0,3
Габариты АхВхС (мм)	151x46x27
Макс. температура окружающей среды, °С	+40
Защита	IP 34

Переключатель для многоскоростных вентиляторов *CDP-3/5*

Применение

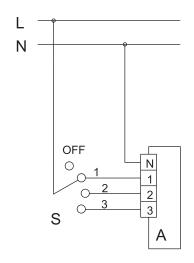
Для включения/выключения и переключения скоростей вентиляторов с многоскоростным двигателем.

Конструкция

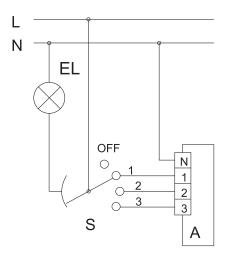
- Корпус изготавливается из высококачественного пластика.
- □ Предназначен для внутристенного монтажа.
- Индекс защиты IP40

Управление

Возможно непосредственное переключение скоростей вентиляторов (схема №1), а также включение и управление вентилятором совместно с освещением в помещении (схема №2).


Монтаж

- Устанавливается внутри помещений на стене в скрытой монтажной коробке.
- Возможна установка в стандартные электромонтажные круглые коробки.


Технические характеристики ____

	CDP-3/5
Напряжение в сети, В / 50 Гц	1~ 230
Номинальный ток, А	5,0
Количество переключаемых скоростей	3
Габариты АхВхС (мм)	88x88x51
Макс. температура окружающей среды, °С	40
Защита	IP 40

Варианты подключения переключателя

Вентилятор при помощи внешнего переключателя S (например, CDP-3/5) может быть вручную включен на одну из требуемых 3-х скоростей или выключен.

Вентилятор при помощи внешнего переключателя S (например, CDP-3/5) может быть вручную включен на одну из 3-х скоростей, при этом освещение в помещении включается параллельно, или выключен, при этом освещение в помещении выключается.

Регулятор скорости тиристорный *CDT E1.8*

Применение

□ Для включения/выключения и регулирования скорости вращения однофазных электродвигателей вентиляторов, управляемых напряжением, в системах вентиляции различных помещений.

Конструкция _

- □ Корпус регулятора изготавливается из высококачественного пластика
- □ Оборудован встроенным выключателем.
- Оснащен монтажной коробкой для внутристенного монтажа.
- □ Индекс защиты IP 40.

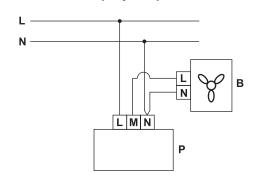
Управление

- Включение/выключение производится при помощи ручки управления.
- □ Плавное регулирование скорости происходит от минимального значения напряжения до максимального. Значение минимальной скорости вращения, задается переменным резистором на плате управления регулятора.
- □ Один регулятор позволяет управлять одновременно несколькими вентиляторами, если общий потребляемый ток не превышает предельно допустимой величины тока регулятора.
- □ Отличаются высокой эффективностью и точностью управления.

Защита _

- Входная цепь регулятора защищена от перегрузки плавким предохранителем.
- □ Регулятор оснащен фильтром высокочастотных помех.

Монтаж .


- Устанавливается внутри помещений на стене в скрытой монтажной коробке.
- Возможна установка в стандартные электромонтажные круглые коробки.

Опции

□ Для настенного монтажа возможно применение монтажной коробки EDR-E (приобретается отдельно).

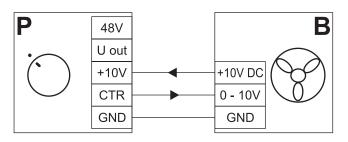
Схема подключения регулятора

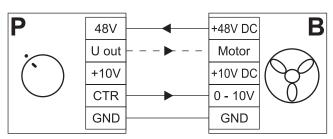
	CDT E1.8
Напряжение в сети, В / 50/60 Гц	1~ 230
Номинальный ток, А	1,8
Габариты АхВхС (мм)	80x80x63
Макс. температура окружающей среды, °С	35
Защита	IP 40

Регулятор скорости для EC-моторов *CDT E/O-10*

Применение

□ Для включения / выключения и регулирования производительности вентиляторов, оборудованных ЕС-моторами, имеющим вход управления 0-10 В.


Конструкция


- □ Корпус регулятора изготавливается из высококачественного пластика.
- □ Оборудован встроенным выключателем.
- Оснащен монтажной коробкой для внутристенного монтажа.
- □ Индекс защиты IP40.

Управление

- Включение / выключение производится при помощи ручки управления.
- Регулирование ведётся от минимально возможного значения до максимального.
- lacktriangled Регулятор отличается высокой эффективностью и точностью управления.

Схема подключения регулятора

Монтаж

- □ Устанавливается внутри помещений на стене в скрытой монтажной коробке.
- Возможна установка в стандартные электромонтажные круглые коробки.

Опции

□ Для настенного монтажа возможно применение монтажной коробки EDR-E (приобретается отдельно).

	ODT E /0 10
	CDT E/0-10
Напряжение, В	10-48VDC
Направляющий сигнал, В	0-10
Габариты АхВхС (мм)	80x80x63
Мах температура окружающей среды, °С	35
Защита	IP 40

Регулятор скорости тиристорный *CDTE E1.8*

Применение

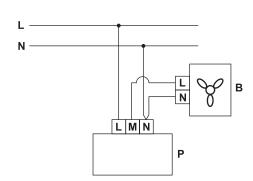
□ Для включения/выключения и регулирования скорости вращения однофазных электродвигателей вентиляторов, управляемых напряжением, в системах вентиляции различных помещений.

Конструкция

- □ Корпус регулятора изготавливается из высококачественного пластика.
- □ Оборудован встроенным выключателем.
- Оснащен монтажной коробкой для внутристенного монтажа.
- □ Индекс защиты IP 40.

Управление _

- Включение/выключение производится при помощи ручки управления.
- Плавное регулирование скорости происходит от минимального значения напряжения до максимального. Значение минимальной скорости вращения, задается переменным резистором на плате управления регулятора.
- Один регулятор позволяет управлять одновременно несколькими вентиляторами, если общий потребляемый ток не превышает предельно допустимой величины тока регулятора.
- □ Отличаются высокой эффективностью и точностью управления.


Защита _

- Входная цепь регулятора защищена от перегрузки плавким предохранителем.
- □ Регулятор оснащен фильтром высокочастотных помех.

Монтаж

□ Устанавливается внутри помещений на стене.

Схема подключения регулятора

	CDTE E1.8
Напряжение в сети, В / 50/60 Гц	1~ 230
Номинальный ток, А	1,8
Габариты АхВхС (мм)	80x80x64
Макс. температура окружающей среды, °С	35
Защита	IP 40

Регулятор скорости для EC-моторов CDTE E/O-10

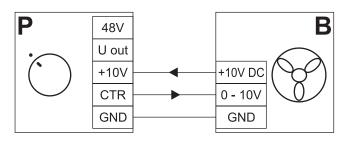
Применение

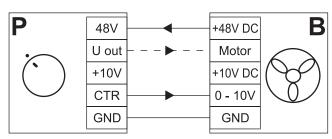
□ Для включения / выключения и регулирования производительности вентиляторов, оборудованных ЕС-моторами, имеющим вход управления 0-10 В.

Конструкция

- □ Корпус регулятора изготавливается из высококачественного пластика.
- □ Оборудован встроенным выключателем.
- Оснащен монтажной коробкой для внутристенного монтажа.
- □ Индекс защиты IP40.

Управление


 $lue{}$ Включение / выключение производится при помощи ручки управления.


- □ Регулирование ведётся от минимально возможного значения до максимального.
- □ Регулятор отличается высокой эффективностью и точностью управления.

Монтаж

□ Устанавливается внутри помещений на стене

Схема подключения регулятора

	CDTE E/0-10
Напряжение, В	10-48VDC
Направляющий сигнал, В	0-10
Габариты АхВхС (мм)	80x80x64
Мах температура окружающей среды, °C	35
Защита	IP 40

Применение

- □ Для автоматического или ручного управления температурным режимом систем вентиляции, отопления и кондиционирования воздуха в различных помещениях.
- 🔲 Позволяет автоматически регулировать интенсивность нагрева / охлаждения воздуха.
- 📮 Используется для управления вентиляторами, клапанами фанкойлов и агрегатов воздушного отопления с трехскоростными вентиляторами 230 В.

Конструкция

- □ Корпус регулятора изготавливается из высококачественного пластика.
- Оснащен встроенным температурным датчиком.
- На лицевой панели расположены ЖК-монитор с подсветкой и кнопки управления.
- Дисплей отображает: текущую и установленную температуру в помещении; режим работы охлаждение, обогрев или автоматический режим; скорость работы вентилятора.
- Индекс защиты IP 40.

Управление

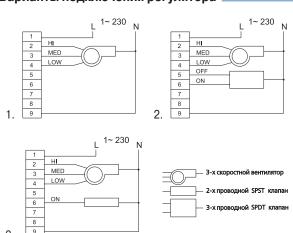
- □ Управление осуществляется при помощи кнопок управления на корпусе регулятора или дистанционного пульта управления (модель MLCD E2).
- □ Позволяет управлять температурным режимом путем изменения скорости вращения вентилятора вручную или автоматически в диапазоне 3-х скоростных режимов (быстро / средне / медленно) в зависимости от температуры воздуха в помещении.
- Возможность автоматического регулирования интенсивности нагрева / охлаждения воздуха в «Ночном режиме»:

Режим «охлаждение»: через 30 минут после активации ночного

режима температура в помещении будет автоматически повышаться на 1 градус ежечасно в последующие два часа и сохранится на данном уровне в течение 8 часов. После выключения таймера температура автоматически восстановится до исходного уровня.

Режим «нагрев»: через 30 минут после активации ночного режима температура в помещении будет автоматически понижаться на 1 градус ежечасно в последующие три часа и сохранится на данном уровне в течение 8 часов. После выключения таймера температура автоматически восстановится до исходного уровня.

Установленные функции управления сохраняются при выключении питания терморегулятора.


Монтаж

- □ Устанавливается внутри помещений.
- □ Рекомендуемая высота установки 1,5 м от уровня пола.
- □ Для более эффективной работы не рекомендуется устанавливать регулятор рядом с окнами, дверями, приборами отопления или охлаждения.

Модификации и опции :

■ Модель MLCD E2 – регулятор оснащен дистанционным пультом управления.

Варианты подключения регулятора

- 1. Вентиляция с нагревом и охлаждением
- 2. Вентиляция с нагревом и охлаждением 3-х проводная SPDT система клапанов
- 3. Вентиляция с нагревом и охлаждением 2-х проводная SPDT система клапанов

	MLC E2/ MLCD E2
Напряжение в сети, В / 50Гц	1~ 230
Номинальный ток, А	2,0
Количество переключаемых скоростей	3
Температурный диапазон регулирования, °С	+10+30
Габариты АхВхС (мм)	88x88x51
Мах. температура окружающей среды, °С	40
Защита	IP 40
Пульт дистанционного управления	нет/да

Комнатный термостат *TS E10*

Применение

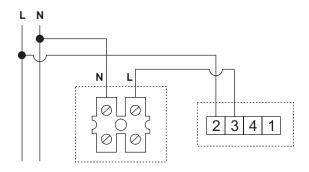
Для поддержания комфортного температурного режима в помещении, а также управления системами вентиляции, отопления и кондиционирования.

Конструкция

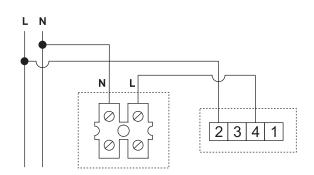
- □ Корпус регулятора изготавливается из высококачественного пластика.
- □ На лицевой стороны расположен регулятор температуры, с боковой тумблер выбора алгоритма работы.
- Поставляется в корпусе для настенного монтажа.
- Индекс защиты IP40

Управление

- □ Управление осуществляется при помощи регулятора температуры в диапазоне от +10 до +30 0С.
- □ Регулятор может работать в 2 алгоритмах (замыкание или размыкание контактов при повышении /понижении температуры).
- В зависимости от выбранного алгоритма работы, вентилятор может работать до момента достижения установленной температуры или, наоборот, включаться в момент достижения установленной температуры.


Монтаж

- □ Устанавливается внутри помещений на стене в наружной монтажной коробке.
- Рекомендуемая высота установки 1,5 м от уровня пола.
- ☐ Для более эффективной работы не рекомендуется устанавливать регулятор рядом с окнами, дверями, приборами отопления или охлаждения.


■ Технические характеристики

	TS E10
Напряжение в сети, В / 50/60 Гц	1~ 220-240
Габариты АхВхС (мм)	84x84x35
Мах температура окружающей среды, °C	40
Защита	IP 40

Варианты подключения регулятора

Вентилятор работает до момента достижения температурного порога, заданного в термостате

Вентилятор работает с момента достижения температурного порога, заданного в термостате

Трансформатор понижающий AT-25 220/12

Применение

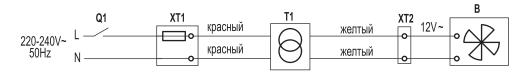
□ Низковольтные понижающие трансформаторы применяется для обеспечения безопасным питающим напряжением 12 В / 50 Гц бытовых вентиляторов, мощность двигателей в которых не превышает 16 Вт (25 ВА), а ток нагрузки не более 2 А.

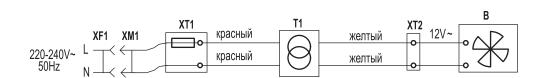
Конструкция

- □ Корпус изготавливается из высококачественного пластика.
- Поставляется в комплекте с защитной клеммной коробкой.
- Выходная клеммная колодка предназначена для подключения вентилятора с безопасным напряжением питания 12 В/50 Гц.

Защита .

- □ Трансформатор оснащен сменным плавким предохранителем для защиты от перегрузок.
- \square Степень защиты от пыли и влаги, за исключением клеммных колодок IP40 .


Монтаж


- ☑ Устанавливается внутри помещений, в зоне, не подверженной влиянию повышенной влажности и температуры.
- Возможен скрытый монтаж за подвесным потолком или в нише в стене с обеспечением достаточной вентиляции для исключения перегрева.
- Исключается установка трансформатора над отопительными приборами.

■ Технические характеристики

	AT-25 220/12
Напряжение в сети, В /50Гц	1~ 230
Выходное напряжение, В /50 Гц.	12
Максимальная мощность нагрузки, не более	16 (25 BA)
Максимальный ток нагрузки, А	2,0
Габариты АхВхС (мм) Трансформатор: Клеммная коробка:	91x58x62 110x40x40
Макс. температура окружающей среды, °С	+40
Защита	IP 40

Схемы подключения трансформатора

- Q1 внешний выключатель, встроенный в стационарную проводку;
- XT1 входная клеммная колодка с встроенным предохранителем в защитной клеммной коробке;
- XF1 розетка, встроенная в стационарную проводку;
- ХМ1 стандартная штепсельная вилка;
- Т1 трансформатор;
- XT2 выходная колодка для подключения вентилятора с напряжением питания 12 В;
- В вентилятор с напряжением питания 12 В.

Трансформатор понижающий *ATK-25 220/12*

Применение

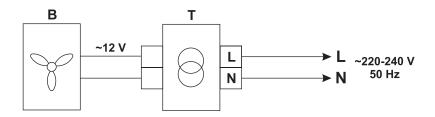
■ Низковольтные понижающий трансформаторы применяется для обеспечения безопасным питающим напряжением 12 В/50 Гц бытовых вентиляторов, мощность двигателей в которых не превышает 16 Вт (25 ВА), а ток нагрузки – не более 2 А.

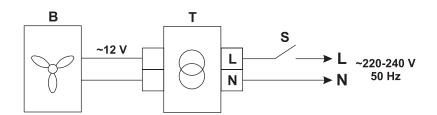
Конструкция

- Компактный корпус изготавливается из высококачественного пластика
- □ ATK-25 220/12 S трансформатор оснащён шнурковым выключателем и лампочкой индикации работы.

Защита .

□ Трансформатор оснащен сменным плавким предохранителем для защиты от перегрузок.


Монтаж


- □ Устанавливается внутри помещений в зоне, не подверженной влиянию повышенной влажности и температуры.
- □ Предназначены для настенного монтажа с учетом обеспечения свободной циркуляции воздуха для охлаждения внутренних цепей.
- □ Исключается установка трансформатора над отопительными приборами.

Технические характеристики

	ATK-25 220/12
Напряжение в сети, В / 50Гц	1~ 230
Выходное напряжение, В / 50 Гц.	12
Максимальная мощность нагрузки, не более	16 (25BA)
Максимальный ток нагрузки, А	2,0
Габариты АхВхС (мм)	80x162x63
Макс. температура окружающей среды, °С	+40
Защита	IP 40

Схемы подключения трансформатора

- В вентилятор с напряжением питания 12 В;
- Т трансформатор защитный;
- S внешний выключатель.

Таймер

BLAUBERGVentilatoren

TE/TI 1.5

Датчики

HSE/HSI 1.5 LSE/LSI 1.5 IRSE/IRSI 1.5

Таймер задержки отключения вентилятора TE/TI 1.5

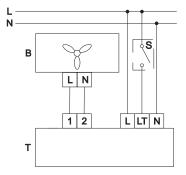
Применение

- □ Для автоматизации системы управления работой бытовых вентиляторов.
- □ Позволяет вентилятору работать установленное время в диапазоне от 2 до 30 минут после нажатия кнопки отключения вентилятора. Через заданное время таймер задержки отключения автоматически выключит вентилятор.
- □ Для задания оптимального времени проветривания ванных, туалетных комнат, кухонь и других бытовых помещений.

Конструкция и монтаж .

- Корпус выполнен из высококачественного пластика.
- □ Таймер устанавливается внутри помещений.
- Индекс защиты IP54
- □ Модель ТЕ 1.5 поставляется в корпусе для настенного монтажа.
- Модель ТІ 1.5 поставляется в корпусе для скрытого монтажа.

Датчик влажности HSE/HSI 1.5


Применение.

- □ Для автоматизации системы управления работой бытовых вентиляторов.
- □ Позволяет установить индивидуальный уровень влажности для помещения и автоматически запускает работу вентилятора при превышении заданного значения.
- ☐ Для помещений с повышенным уровнем влажности (ванные комнаты, душевые, кухни, бассейны и другие).

Конструкция и монтаж

- □ Корпус выполнен из высококачественного пластика.
- □ Датчик устанавливается внутри помещений.
- □ Индекс защиты IP54
- Модель HSE 1.5 поставляется в корпусе для настенного монтажа.
- Модель HSI 1.5 поставляется в корпусе для скрытого монтажа.

Схема подключения датчиков

В - вентилятор;

S - внешний выключатель;

Т - датчик

Фотодатчик с таймером LSE/LSI 1.5

Применение

- Для автоматизации системы управления работой бытовых вентиляторов.
- □ Для помещений, с периодическим пребыванием людей (ванная и туалетная комнаты, кухня и другие помещения).
- Встроенный фотодатчик реагирует на изменение освещения и автоматически включает или выключает вентилятор.
- □ При отсутствии освещения, выключение вентилятора происходит с задержкой по времени в диапазоне от 2 до 30 минут (устанавливается заранее).

Конструкция и монтаж

- □ Корпус выполнен из высококачественного пластика.
- Датчик устанавливается внутри помещений.
- Индекс защиты IP54
- □ Модель LSE 1.5 поставляется в корпусе для настенного монтажа.
- Модель LSI 1.5 поставляется в корпусе для скрытого монтажа.

Датчик движения с таймером IRSE/IRSI 1.5

Применение

- □ Для автоматизации системы управления работой бытовых вентиляторов.
- □ Для помещений, с периодическим пребыванием людей (ванная и туалетная комнаты, кухня и другие помещения).
- □ Встроенный инфракрасный датчик реагирует на движение в помещении, в пределах зоны чувствительности, и автоматически запускает работу вентилятора.
- □ Автоматическое выключение вентилятора при отсутствии движения происходит с задержкой по времени в диапазоне от 2 до 30 минут (устанавливается заранее).

Конструкция и монтаж .

- □ Корпус выполнен из высококачественного пластика.
- □ Датчик устанавливается внутри помещений.
- Индекс защиты IP54
- Модель IRSE 1.5 поставляется в корпусе для настенного монтажа.
- Модель IRSI 1.5 поставляется в корпусе для скрытого монтажа.

	TE/TI 1.5; HSE/HSI 1.5; LSE/LSI 1.5; IRSE/IRSI 1.5
Напряжение питания, В / 50Гц	220-240
Выходная мощность, не более, ВА	330
Ток нагрузки, не более, А	1,5
Габариты АхВхС (мм)	162x80x70
Условия работы таймера, ⁰С	от 0 до +40
Защита	IP30

ЗАМЕТКИ

Ventbazar.com.ua; .: (044) 50 000 53

ЗАМЕТКИ

Ventbazar.com.ua: :: (044) 50 000 53

ЗАМЕТКИ

Ventbazar.com.ua: .: (044) 50 000 53

ЗАМЕТКИ

Blauberg Ventilatoren GmbH Aidenbachstr. 52a D-81379 München

info@blaubergventilatoren.de www.blaubergventilatoren.de

